
Typed Abstractions for Causal 
Probabilistic Programming

Théo Wang*, Dario Stein*, Eli Bingham, Jack Feser, Ohad Kammar, 
Michael Lee, Jeremy Yallop



Our work in context

• Causal Inference (Pearl)
• “Does X cause Y”
• “Given that we saw Y, had X not been the case, would Y still happen?”
• Wide applications in empirical sciences (e.g. climate modelling, clinical trials 

etc.) + Machine learning
• Causal Probabilistic Programming

• Fully-fledged PPLs + First class causal primitives
• E.g. MultiVerse (Perov et al 2020), OmegaC (Tavares 2021), ChiRho (Basis)

• Contribution: ChiRho as a Haskell library
• Disentangled its dependence on effect handlers and vectorisation
• Typed abstractions
• Clarified its semantics



Overview

• Crash course in causal inference à la Pearl with an example. 
• Using typed abstractions à la ChiRho to solve this example.



A simple example: Dario’s Car

Dario's car didn't start today. Had he refuelled, would the car have started? 



Dario's car didn't start today. Had he refuelled, would the car have started? 

Observing the Factual World Intervening on the 
Counterfactual World

Result of the query

Factual World Counterfactual World

A simple example: Dario’s Car



Solving the problem à la Pearl



Dario's car didn't start today. Had he refuelled, would the car have started? 
Factual World Counterfactual World

(1) Twinning (e.g. Jacobs ’19, Pearl ’09) to split the model into two 
correlated copies/worlds (factual & counterfactual)



Dario's car didn't start today. Had he refuelled, would the car have started? 

Observing the Factual World Intervening on the 
Counterfactual World

Result of the query

(2) Intervening with do(fuel’=True) and observing carStarts

à About 64%



Causal operations as program transformations

First class causal primitives

So far…

+ Types



Typed and automatic causal 
reasoning à la ChiRho



• A model is a suspended computation executed under 
intervention instructions which specify intervention point 
behaviour.

Implementing Interventions: the Caus monad
• Intervention points: typed identifiers of program locations where 

interventions are allowed
Caus(X) = InterventionEnv → Prob(X)



• Do intervention as an environment transformation; apply on model by 
precomposition

Implementing Interventions ct’d

do : InterventionPoint(X) → InterventionInstr(X) → (InterventionEnv → InterventionEnv)

model : Caus(X) = InterventionEnv → Prob(X)

InterventionEnv
do ipt instr
−−−−−−→ InterventionEnv

model
−−−→ Prob(X)



Implementing Twinning (briefly)

• Strategy: eagerly compute all worlds of interest at the same time.
• Which worlds?: determined by interventions
• How? Multivalue applicative
• Check out my poster! 



Putting it together

Model code

Inference code

Dario's car didn't start today. Had he refuelled, would the car have started? 



Outlook

• Naively, Pearl’s intervention and twinning are program 
transformations.
• But we can do them automatically and safely using Typed ChiRho 

(https://github.com/causal-ppl/chirho-haskell)
• Interventions = reader monad
• Counterfactuals à la ChiRho = applicative
• More detail on the poster !

• Highly expressive (implementation has more examples!)
• Towards semantics for Causal PPLs? 

https://github.com/causal-ppl/chirho-haskell
https://github.com/causal-ppl/chirho-haskell
https://github.com/causal-ppl/chirho-haskell
https://github.com/causal-ppl/chirho-haskell
https://github.com/causal-ppl/chirho-haskell


Backup slides



Haskell ChiRho vs Python ChiRho

Haskell ChiRho Python ChiRho

Intervention points Pyro’s string names of sample 
statements

Do interventions The do handler in ChiRho (with some 
difference in the order in which 
intervention instructions are run)

MVal type PyTorch tensors

Intervention names Named tensor dimensions generated 
and managed by ChiRho and its 
handlers, e.g. 
MultiWorldCounterfactual

Applicative structure Tensor broadcasting

sample: MVal Caus a -> Caus MVal a Vectorised sampling



Implementing Twinning (Counterfactuals)
Strategy: eagerly compute all worlds of interest at the same time.

MVal(X)
△
=

∐

N⊆finNames

(2N → X)
For each generated world (choice of factual (0) or 
counterfactual (1) per branching point), an X 
value.

Which Worlds are of interest? Sharing information across worlds via broadcasting

Branching points

M1 = ([], {() !→ a}) M2 = ([b], {(0) !→ a0, (1) !→ a1})E.g.

1. do(A=1)
2. do(B=2)

2 Interventions 4 Worlds of interest
• Fully Factual
• 1 is applied
• 2 is applied
• Both are applied

pure : X → MVal(X)

⟨∗⟩ : MVal(X → Y ) → MVal(X) → MVal(Y )

pure(f)⟨∗⟩M1⟨∗⟩M2 = ([b], (0) : f(a, a0), (1) : f(a, a1))



Graded monad

Caus [A1...An] X
△
=

∏

i

List(InterventionInstr(Ai)) → P (X)


