Typed Abstractions for Causal
Probabilistic Programming

Théo Wang*, Dario Stein*, Eli Bingham, Jack Feser, Ohad Kammar,
Michael Lee, Jeremy Yallop

Our work in context

 Causal Inference (Pearl)
* “Does XcauseY”
* “Given thatwe sawY, had X not been the case, would Y still happen?”
* Wide applications in empirical sciences (e.g. climate modelling, clinical trials
etc.) + Machine learning
* Causal Probabilistic Programming

* Fully-fledged PPLs + First class causal primitives
* E.g. MultiVerse (Perov et al 2020), OmegaC (Tavares 2021), ChiRho (Basis)

 Contribution: ChiRho as a Haskell library
* Disentangled its dependence on effect handlers and vectorisation
* Typed abstractions
* Clarified its semantics

Overview

 Crash course in causal inference a la Pearl with an example.
* Using typed abstractions a la ChiRho to solve this example.

A simple example: Dario’s Car

bgfﬁn}
’S’V‘,‘L O 1 model :: (MonadDistribution m) => m Bool

O 2 model =
/ 3 fuel <- bernoulli(0.8)
\\/ 4 battery <- bernoulli (0.9)
O 5 let carStarts = fuel && battery
6 return carsSstarts
S0

Dario's car didn't start today. Had he refuelled, would the car have started?

A simple example: Dario’s Car

1 model :: (MonadDistribution m) => m Bool

(:> 2. model
3 fuel <- bernoulli(0.8)
battery <- bernoulli (0.9)
\J let carStarts = fuel && battery
return carStarts

L= I L

Factual World Counterfactual World
Dario's car didn't start today. Had he refuelled, would the car have started?
\]\] |)
| | |
Observing the Factual World Intervening on the Result of the query

Counterfactual World

Solving the problem a la Pearl

ol i)
fg (:> 1 model :: (MonadDistribution m) => m Bool

2. model =

fuel <- bernoulli(0.8)

battery <- bernoulli (0.9)

let carStarts = fuel && battery
return carStarts

e
~

Factual World Counterfactual World
Dario's car didn't start today. Had he refuelled, would the car have started?

(1) Twinning (e.g. Jacobs ’19, Pearl ’09) to split the model into two
correlated copies/worlds (factual & counterfactual)

m y 1| fuel <- bermnoulli (0.8)
b ! L&M 2| battery <- bernoulli (0.9)
.m\‘a "LJ 3 let fuel’ = fuel
Q 4| let battery’ = battery
C) 5| let carStarts = fuel && battery
\ 6/ let carStarts’ = fuel’ && battery’
1

7|l return carStarts’

’ Lo / 1/ fuel <- bermnoulli (0.8)
bﬂ'ﬁ'\lb -,(.J ‘l’(Mra 2| battery <- bermoulli (0.9)

-&'J" 9) O 3l let fuel’ = fuel
O \ / s let battery’ = battery
s/ let carStarts = fuel && battery
\ | 6 let carStarts’ = fuel’ && battery’
O @) UMWL 7 return carStarts’
onSlots

Dario's car didn't start today. Had he refuelled, would the car have started?
\ J ;
Y Y
Observing the Factual World Intervening on the

Counterfactual World

(2) Intervening with do(fuel’=True) and observing carStarts

fuel <- bernoulli (0.8)
battery <- bermoulli (0.9)
O Ldbz let fuel’ = True -- do-intervention

’S' O f.{ let battery’ = battery

Result of the query

/ let carStarts = fuel && battery
let carStarts’ = fuel’ && battery’
condition (carStarts == False) -- conditioning
return carStarts’
WW

- About 64%

So far...

Causal operations as program transformations

Q g 0
VO) %\,f avi
OWS 0 oo

First class causal primitives

+ Types

Typed and automatic causal
reasoning a la ChiRho

Implementing Interventions: the Caus monad

* Intervention points: typed identifiers of program locations where
Interventions are allowed

Caus(X) = InterventionEnv — Prob(X)

* Amodelis a suspended computation executed under
intervention instructions which specify intervention point

behaviour.
model :: (MonadDistribution m) =>
InterventionPoint m Bool -> Caus m (...)

model fuelPt =
fuel <- bernoulli (0.8)
fuellnt <- new_ fuelPt fuel -- New intervention point for fuel

(o I & 1 e I I

Implementing Interventions ct’d

* Do intervention as an environment transformation; apply on model by
precomposition

do : InterventionPoint(X) — Interventionlnstr(X) — (InterventionEnv — InterventionEnv)

model : Caus(X) = InterventionEnv — Prob(X)

do ipt instr . del
P > InterventionEnv ——— Prob(X)

InterventionEnv

Implementing Twinning (briefly)

* Strategy: eagerly compute all worlds of interest at the same time.
* Which worlds?: determined by interventions

* How? Multivalue applicative

* Check out my poster!

1
2
3
4
5
6
7
8

Putting it together

Dario's car didn't start today. Had he refuelled, would the car have started?

model :: MonadDistribution m =>
InterventionPoint m Bool -> Caus m (MVal Bool)

model fuelPt = do

fuel <- sample (pure (bernoulli 0.8));

fuelInt <- new_ fuelPt fuel;

battery <- sample (pure (bernoulli 0.9));

let carStarts = ((&&) <$> fuellnt) <*> battery;

return carStarts

Model code

1| fuelPt :: InterventionPoint Bool <- createKey -- (impl detail)
2 let intervenedConditionedModel Caus m Bool = do
3 -— attach intervention instructions for ‘fuelPt
4 carStarts <- do_ fuelPt (Value True)
5 "fuelTrue" (model fuelPt);
Inference COde 6 -— condition on the factual value of carStarts
7 condition (getFactual carStarts == False);
8 -— return its counterfactual value
9 return (getCounterfactual carStarts);
10, -— Run inference

11 avg <- infer (run intervenedConditionedModel)

12 print avg -- approx 0.64

Outlook

* Naively, Pearl’s intervention and twinning are program
transformations.

* But we can do them automatically and safely using Typed ChiRho
(https://github.com/causal-ppl/chirho-haskell)
* Interventions = reader monad
* Counterfactuals a la ChiRho = applicative
* More detail on the poster &

* Highly expressive (implementation has more examples!)
* Towards semantics for Causal PPLs?

https://github.com/causal-ppl/chirho-haskell
https://github.com/causal-ppl/chirho-haskell
https://github.com/causal-ppl/chirho-haskell
https://github.com/causal-ppl/chirho-haskell
https://github.com/causal-ppl/chirho-haskell

Backup slides

Haskell ChiRho vs Python ChiRho

Haskell ChiRho Python ChiRho

Intervention points

Do interventions

MVal type

Intervention names

Applicative structure

sample: MVal Caus a -> Caus MVal a

Pyro’s string names of sample
statements

The do handler in ChiRho (with some
difference in the order in which
intervention instructions are run)

PyTorch tensors

Named tensor dimensions generated
and managed by ChiRho and its
handlers, e.g.
MultiWorldCounterfactual

Tensor broadcasting

Vectorised sampling

Implementing Twinning (Counterfactuals)

Strategy: eagerly compute all worlds of interest at the same time.

A\ N For each generated world (choice of factual (0) or
MVaI(X) — | | (2 — X) counterfactual (1) per branching point), an X
N Cgi,Names value.

Branching points

E.g. My = ([],{0) = a}) My = ([0],{(0) = ao, (1) = a1})
Which Worlds are of interest? Sharing information across worlds via broadcasting
2 Interventions 4 Worlds of interest pure : X — MVal(X)
1. do(A=1) * Fully Factual
. ~ 1isapplied (x) : MVal(X — Y) — MVal(X) — MVal(Y)
2. do(B=2) 2isapplied

. Both are applied pure(f)(x) My {(x)Ms = ([b],(0) : f(a,ap),(1): f(a,ay))

Graded monad

Caus [A1...A,] X 2 H List(Interventionlnstr(A;)) — P(X)

(

