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TL;DR

Causal Inference [2]: answers questions like “Does X cause Y?” (interventional) or “Given

that Y is observed, had X been true, would Y still be true?” (counterfactual).

Useful in sciences, e.g. clinical trials, climate modelling & Machine Learning.

Standard treatment based on SCMs: not very expressive!

Causal Probabilistic Programming = first class causal primitives on PPLs. (e.g. Multiverse

[3], OmegaC [4] or ChiRho [1])

Useful & more general than SCMs! But practitioner-oriented and semantics often

entangled with implementation concerns.

Contribution: Typed version of ChiRho [1], disentangling its abstractions from implemen-

tation and thus clearer semantics.

Caveat: Fully Bayesian, so sidestep questions of identifiability!

A Simple Example

Model: D. has a car. It starts if it has both fuel and battery.

1 model :: (MonadDistribution m) => m Bool
2 model =
3 fuel <- bernoulli(0.8)
4 battery <- bernoulli(0.9)
5 let carStarts = fuel && battery
6 return carStarts

Query:

Systematic Causal Reasoning à la Pearl

Pearl: Reduce Causal query to Probabilistic query via program transformations.

1. Twinning [2]: to split the model into two correlated copies/worlds (factual &

counterfactual). Note that here both fuel and battery are treated as exogenous:

they are shared between the two worlds. Result:

2. Intervention on the counterfactual world do(fuel′ = True): forcefully set the value of
fuel to True. Equivalent to the intuition of going back in time, forcing D. to refuel his

car while keeping everything else the same. Result:

3. Conditioning on the factual world using the PPL primitive. Result:

1 fuel <- bernoulli(0.8)
2 battery <- bernoulli(0.9)
3 let fuel' = True -- do-intervention
4 let battery' = battery
5 let carStarts = fuel && battery
6 let carStarts' = fuel' && battery'
7 condition(carStarts == False) -- conditioning
8 return carStarts'

And indeed, running inference on this program gives us the right answer: around 64%.

Success!

Problem statement

As shown above, Pearl’s intervention and twinning can be presented as program trans-

formations. But program transformations can be subtle to deal with.

How can we build a language where causal models are first class and where these

transformations can be performed automatically, compositionally and safely?

Implementation & more

Our implementation can be found here: github.com/causal-

ppl/chirho-haskell. We have many more examples there, incl the

ChiRho tutorial, mediation analysis, etc. to showcase the expressivity

of our language.

Our solution: Typed & Automatic Causal Reasoning à la ChiRho

We distill the core functionality of ChiRho [1] into a Haskell library. We can then solve

the example as follows:

Model code (in red: results of running the model under the intervention at line 4 of

inference code. Read this column and come back to this.)

1 model :: MonadDistribution m =>
2 InterventionPoint m Bool -> Caus m (MVal Bool)
3 model fuelPt = do
4 fuel <- sample (pure (bernoulli 0.8)); -- ([], (): f), f ∼ bernouilli 0.8
5 fuelInt <- new_ fuelPt fuel; -- Intervention point -- (["fuelTrue"], (0): f, (1): True)
6 battery <- sample (pure (bernoulli 0.9)); -- ([], (): b), b ∼ bernouilli 0.9
7 let carStarts = ((&&) <$> fuelInt) <*> battery;
8 return carStarts -- (["fuelTrue"], (0): f && b, (1): True && b)

Inference code:

1 fuelPt :: InterventionPoint Bool <- createKey -- (impl detail)
2 let intervenedConditionedModel :: Caus m Bool = do
3 -- attach intervention instructions for `fuelPt `
4 carStarts <- do_ fuelPt (Value True) "fuelTrue" (model fuelPt);
5 -- condition on the factual value of carStarts
6 condition (getFactual carStarts == False);
7 -- return its counterfactual value
8 return (getCounterfactual carStarts);
9 -- Run inference

10 avg <- infer (run intervenedConditionedModel)
11 print avg -- approx 0.64

The Caus type: Interventions as a reader monad

Slogan: Instead of transforming the program, transform the program’s environment.

Key idea: intervention point: typed identifier of program locations where we can

insert interventions (see line 5 of model code).

Causal model = suspended computation which runs when provided with

interventions for each intervention point.

Caus(X) , IntvEnv → Prob(X)
where IntvEnv is a map associating each intervention point InterventionPoint(X) to
the intervention instructions inserted at that point List(IntvInstr(X)).
Fact: do-intervention = transformation of environments that inserts the intervention

instruction into the entry in the environment corresponding to the intervention

point.

do : InterventionPoint(X) → IntvInstr(X) → (IntvEnv → IntvEnv)
And we can apply the intervention to a model by precomposition.

IntvEnv do fuelPt instr−−−−−−−→ IntvEnv model fuelPt−−−−−−→ Prob(X)

The MVal type: Automatic Twinning using applicatives

Strategy: eagerly compute all worlds of interest at the same time.

Which worlds? We generate them from interventions.

1 intervention = 2 worlds: factual world (0), counterfactual world (1).

2 interventions = 4 worlds: fully factual (00), one of them applied (10)/(01), both applied (11).

In general, n interventions = 2n worlds.

Thus, each intervention (instruction) will act as a binary branching point. We give a

branching point name to each instruction IntvInstr(X) = Intv(X) × Names.
How to compute at the same time? Multivalues.

MVal(X) ,
∏

N⊆finNames

(2N → X)

Branching point names

For each generated world (choice of

factual (0) or counterfactual (1) per

branching point), an X value.

Examples of multivalues:

M1 = ([], {() : x}): an unbranched multivalue with value x.

M2 = ([b], {(0) : y0, (1) : y1}): a multivalue depending on an upstream intervention b: if b isn’t
applied (branch 0), then it takes value y0; if b is applied (branch 1), then it takes value y1.

How to share variables between worlds? Applicative structure of MVal (≈
broadcasting).

f : X → Y → Z ` pure(f ) 〈?〉 M1 〈?〉 M2 = ([b], {(0) : f (x, y0), (1) : f (x, y1)})
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