Typed Abstractions for Causal Probabilistic Programming
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TL;DR

Causal Inference [2]: answers questions like “Does X cause Y?” (interventional) or “Given
that Y is observed, had X been true, would Y still be true?” (counterfactual).

= Useful in sciences, e.g. clinical trials, climate modelling & Machine Learning.
= Standard treatment based on SCMs: not very expressive!

Causal Probabilistic Programming = first class causal primitives on PPLs. (e.g. Multiverse
[3], OmegaC [4] or ChiRho [1])

= Useful & more general than SCMs! But practiioner-oriented and semantics often
entangled with implementation concerns.

Contribution: Typed version of ChiRho [1], disentangling its abstractions from implemen-
tation and thus clearer semantics.
Caveat: Fully Bayesian, so sidestep questions of identifiability!

A Simple Example

Model: D. has a car. It starts if it has both fuel and battery.

fuel battery tmodel :: (MonadDistribution m) => m Bool

2>model =

\ / 3 fuel <- bernoulli (0.8)
battery <- bernoulli (0.9)
carStarts let carStarts = fuel && battery
return carStarts

> O b

Query:
Counterfactual World

. Had he refuelled, would the car have started?
\ ) ;
Y Y

Result of the query

Intervening on the
Counterfactual World

Systematic Causal Reasoning a la Pearl

Pearl: Reduce Causal query to Probabilistic query via program transformations.

1. Twinning |2]: to split the model into two correlated copies/worlds ( &
counterfactual). Note that here both fuel and battery are treated as exogenous:
they are shared between the two worlds. Result:

2. Intervention on the counterfactual world do(fuel’ = True): forcefully set the value of
fuel to True. Equivalent to the intuition of going back in time, forcing D. to refuel his
car while keeping everything else the same. Result:

3. Conditioning on using the PPL primitive. Result:
1

2

3let fuel' = True -- do-interwvention

4 let battery' = battery

5

6 let carStarts' = fuel' && battery'

7 condition ( == False) -- conditioning

g return carStarts'

And indeed, running inference on this program gives us the right answer: around 64%.
success!

Problem statement

Our solution: Typed & Automatic Causal Reasoning a la ChiRho

We distill the core functionality of ChiRho [1] into a Haskell library. We can then solve
the example as follows:

Model code (in red: results of running the model under the intervention at line 4 of
inference code. Read this column and come back to this.)

1model :: MonadDistribution m =>

2 InterventionPoint m Bool -> Caus m (MVal Bool)
smodel fuelPt = do

« fuel <- sample (pure (bernoulli 0.8));

fuelInt <- new_ fuelPt fuel; -- Interwvention point

-- (1], O: f), f ~ bernouilli 0.8

-— (["fuelTrue"], (0): f, (1): True)
battery <- sample (pure (bernoulli 0.9)); -- ([J, O: b), b ~ bernoutlli 0.9

let carStarts = ((&&) <$> fuellnt) <*> battery;

-— (["fuelTrue"], (0): f €% b, (1): True €€ b)

0 N o o

return carStarts

Inference code:

i fuelPt :: InterventionPoint Bool <- createKey -- (impl detail)
2let intervenedConditionedModel :: Caus m Bool = do
3 —— attach aintervention instructions for ~fuelPt~

carStarts <- do_ fuelPt (Value True) "fuelTrue" (model fuelPt);
-— condition on the factual wvalue of carStarts
condition (getFactual carStarts == False);

~N O O Wb

-— return <ts counterfactual wvalue

s return (getCounterfactual carStarts);

9 —— Run 2nference

i0avg <- infer (run intervenedConditionedModel)

11 print avg -- approx 0.64

The Caus type: Interventions as a reader monad

Slogan: Instead of transforming the program, transform the program’s environment.

= Key idea: intervention point: typed identifier of program locations where we can
insert interventions (see line 5 of model code).

= Causal model = suspended computation which runs when provided with
iInterventions for each intervention point.

Caus(X) = IntvEnv — Prob(X)

where IntvEnv is a map associating each intervention point InterventionPoint(X) to
the intervention instructions inserted at that point List(Intvinstr(X)).

= Fact: do-intervention = transformation of environments that inserts the intervention
instruction into the entry in the environment corresponding to the intervention
poInt.

do : InterventionPoint(X) —  Intvinstr(X) —  (IntvEnv —  IntvEnv)

And we can apply the intervention to a model by precomposition.

> Prob( X))

do fuelPt instr model fuelPt

> IntvEnv

ntvEnv

The MVal type: Automatic Twinning using applicatives

As shown above, Pearl’s intervention and twinning can be presented as program trans-
formations. But program transformations can be subtle to deal with.

How can we build a language where causal models are first class and where these
transformations can be performed automatically, compositionally and safely?

Implementation & more

Our implementation can be found here:
ppl/chirho-haskell.  We have many more examples there, incl the
ChiRho tutorial, mediation analysis, etc. to showcase the expressivity
of our language.

github.com/causal- :'.
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Strategy: eagerly compute all worlds of interest at the same time.
= Which worlds? We generate them from interventions.
= 1 intervention = 2 worlds: factual world (O), counterfactual world (1).
= 2 interventions = 4 worlds: fully factual (00), one of them applied (10)/(01), both applied (11).

= |n general, n interventions = 2" worlds.

Thus, each intervention (instruction) will act as a binary branching point. We give a
branching point name to each instruction Intvinstr(X) = Intv(X) x Names.

= How to compute at the same time? Multivalues.

Mval(X) £ ]

NCqNames

For each generated world (choice of

2V = X)

factual (O) or counterfactual (1) per

branching point), an X value.
Branching point names

= Examples of multivalues:
= My = (|],{() : x}): an unbranched multivalue with value x.

= My = (|b],{(0) : yo, (1) : y1}): @ multivalue depending on an upstream intervention b: if bisn't
applied (branch 0), then it takes value yy; if b is applied (branch 1), then it takes value ;.

= How to share variables between worlds? Applicative structure of MVal (=
broadcasting).

f: X =Y = ZFpure(f) (x) My (x) My = (]0],{0) : f(z,v0), (1) : f(z,y1)})
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