Typed Abstractions for Causal Probabilistic

Programming
Theo Wang” Dario Stein* Eli Bingham
theo.wang@spc.ox.ac.uk dario.stein@ru.nl eli@basis.ai
University of Oxford Radboud University, Nijmegen Basis
United Kingdom Netherlands United States
John Feser Ohad Kammar Michael Lee
jack@basis.ai ohad.kammar@ed.ac.uk michael.lee@cl.cam.ac.uk
Basis University of Edinburgh University of Cambridge
United States United Kingdom United Kingdom
Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

University of Cambridge

United Kingdom

1 Introduction and Contributions

Causal inference plays a central role in empirical science
and there is increasing interest in applying causal concepts
to machine learning (e.g. surveys [11, 20], frameworks [4]),
including applications such as counterfactual token gener-
ation for LLMs [6, 19]. The standard treatment uses Pearl’s
structural causal models (SCMs), which are inexpressive: we
wish to apply causal queries to a wider range of programs.

Enter causal probabilistic programming: fully-fledged proba-
bilistic programming with first-class causal primitives. Sev-
eral existing languages fit this paradigm; OMEGAC [24] offers
an intervention operator, at the price of a nonstandard eval-
uation strategy and dynamic scoping. MULTIVERSE [17] and
CHIRHO [2] build on Pyro [5, 18]. ChiRho seamlessly inter-
acts with Pyro and PyTorch, leading to very performant code.
However, its causal mechanism is entangled with PyTorch
vectorization and Pyro’s custom effect handler system.

This talk distills the core ChiRho design as a Haskell library,
disentangling the dependence on vectorization and effect
handlers, adding static types, and clarifying the semantics.

2 Causal Reasoning

Pearl’s systematic treatment of causality [16] introduces a
hierarchy of three ‘rungs’ of causal questions:

I (observational) “seeing” — is X associated with Y?
II (interventional) “doing” — does X cause Y?

“Both authors contributed equally to this research.

III (counterfactual) “imagining” - given that we saw Y,
was X its cause?

Probabilistic programming, by construction, resides on rung
L. Just as probabilistic programs encode probabilistic mod-
els and observations, we want to use causal probabilistic
programs to encode causal models and queries.

As Pearl’s rungs are mathematically distinct [16], we gen-
erally cannot answer a rung II question with only rung I
information, barring further structure or assumptions. That
is, causal programs need to expose more of their intension
than probabilistic ones. How to do this in a principled way,
i.e. only exposing the right amount of intension, is one focus

of this talk.

2.1 Causal reasoning, by inspection

Our running causal query example is written in Haskell
using a monadic inference library such as MonadBayes or
LazyPPL [7, 21-23]:

1 uel <- bernoulli(0.8)

2 battery <- bernoulli(0.9)

3 let carStarts = fuel && battery
¢ return carStarts

A car requires fuel and battery power to start. We wonder:
Given that the car did not start this morning, would it have
started if it had been refueled the night before? By manual
inspection, we can transform this counterfactual query into
a Bayesian one, namely: what is the probability that the

Theo Wang, Dario Stein, Eli Bingham, John Feser, Ohad Kammar, Michael Lee, and Jeremy Yallop

battery was at fault?

0.9-0.2 9
—— = — ~ 64%
1-09-08 14

p(battery|—(battery A fuel)) =
Note that in our model, battery and fuel were modelled as in-
dependent. Under different causal assumptions (for example,
battery depending on fuel) the answer would be different.

2.2 Causal reasoning, systematically

Inspection works well for simple examples, but to answer
counterfactual queries systematically, we can apply a se-
ries of program transformations consistent with Pearl’s do-
calculus. The twinning transformation (e.g. [10, 16]) splits
the model into two correlated copies or ‘worlds’: the factual
world and the (prime-suffixed) counterfactual world:

uel <- bernoulli (9.8)
battery <- bernoulli(0.9)

[IR T R RN

let fuel' = fuel
let battery' = battery
let carStarts = fuel && battery
6 let carStarts' = fuel' && battery'

return carStarts'

The splitting treats the variables fuel and battery as exoge-
nous, i.e. shared between both worlds. We can perform a
do-intervention by assigning fuel' = true in the counterfac-
tual branch. We then use the underlying Bayesian facilities
to condition on the real-world observations (the car did not
start), thereby obtaining an updated prediction in the coun-
terfactual world. The answer to our counterfactual query is
thus computed by the transformed probabilistic program:

1 uel <- bernoulli (0.8)

2 battery <- bernoulli(0.9)

3 let fuel' = True -- do-intervention

4 let battery' = battery

5 let carStarts = fuel && battery

6 let carStarts' = fuel' && battery'
condition(carStarts == False) -- conditioning
& return carStarts'

2.3 Causal reasoning, automatically

Manually transforming programs becomes infeasible for
more complex causal models. We wish to express causal
probabilistic models in a first-class way that lets such trans-
formations be performed automatically, safely and composi-
tionally. The ChiRho language provides features that support
these transformations. This section presents the core ChiRho
functionality, distilled as a Haskell library.

For Rung I, ChiRho inherits Pyro’s probabilistic program-
ming features. For the two higher rungs, we introduce the
following abstractions:

Rung II. To manage interventions, we track intervention
points, which are typed identifiers of program locations

where interventions are allowed. We define a monad caus rep-
resenting a causal model. caus is a reader monad; a model is
a suspended computation that is executed under intervention
instructions, which specify intervention point behavior.

Rung III. To manage counterfactuals, we track expressions
which differ by world (0=factual, 1=counterfactual). The type
Mval a represents such multi-values. Elements (n,v) pair a
finite list n of names with a map v : 2" — a. Each name
in n refers to a branching point, and an assignment w =
(w1, ..., wy) € 2" identifies a specific world, i.e. a choice of
branch for each branching point, e.g. in

My=([1.{O :a}), Mz=(["0'].{(0) : a0, (1) : a1}),

M; is an unbranched multi-value, while M, contains a branch-
ing named 'b’; in the world where "0’ = 0, it takes (factual)
value ag, and for b’ = 1 it takes (counterfactual) value a;.

ChiRho represents multi-values as tensors with one dimen-
sion per branching point, and uses broadcasting to share
information across different worlds. In Haskell, we make
this broadcasting explicit via an applicative structure [14]
on Mval. For example, computing a binary function f over
M; and M, results in the branched value

FEM)My = (['6'].{(0) : f(a a0). (1) : fa.a1)}) (1)

where broadcasting results in a being shared across the fac-
tual and counterfactual worlds.

Worked example. We can now formulate our example causal
probabilistic model using the new causal primitives.

1 arModel :: MonadDistribution m
2 => InterventionPoint m Bool
3 -> Caus m (MVal Bool)

4 carModel fuelPt = do

5 fuel <- sample (pure (bernoulli 0.8));

6 fuelInt <- new_ fuelPt fuel;

7 battery <- sample (pure (bernoulli 0.9));

8 let carStarts = ((&&) <$> fuellnt) <x> battery;
9 return carStarts

11-13 the type signature shows that this is a causal model
exposing one Boolean intervention point (for fuel) and
returning a Boolean multivalue.

15 we initialize fuel :: Mval Bool as an unbranched multi-
value, containing a random Boolean.

16 new_ reads the intervention instructions associated with
intervention point fuelPt; the multivalue fuellnt is a
possibly branched version of fuel, depending on what
interventions we encounter.

17 battery is an unbranched multivalue, containing a random
Boolean.

18 we use the applicative structure of Mval to compute carStarts
across all branches. Note that as in eq. (1), battery will
be shared across both branches.

The following workflow evaluates our counterfactual query:

Typed Abstractions for Causal Probabilistic Programming

uelPt <- createKey -- (implementation detail)
let intervenedConditionedModel = do

1

2

3 -- attach intervention instructions for *‘fuelPt®
4

J

carStarts <- do_ fuelPt (Value True)
"fuelTrue" (carModel fuelPt);
6 -- condition on the factual value of carStarts
7 condition (not (getFactual carStarts));

8 -- return its counterfactual value

9 return (getCounterfactual carStarts);

10 -- Run inference

11 avg <- infer (run intervenedConditionedModel)

12 print avg -- approx 0.64

We use the do_ function to append a specific intervention
instruction to carModel: at intervention point fuelPt, create
a counterfactual branch with value True. This controls the
behavior of new_ in line 5 of carModel. The remaining pro-
gram uses getCounterfactual and getFactual to read off the
corresponding values from a multivalue, and then applies or-
dinary Bayesian conditioning and inference. The interested
reader can find nontrivial examples of our implementation
in the project repository [3], including a full translation of
the ChiRho tutorial code [1].

Grading. Semantically, the monad caus is graded by the
available intervention points [8, 15]. As Haskell’s effect sys-
tem doesn’t allow tracking of grades, we pass values of type
InterventionPoint around manually, thereby tracking inter-
vention points in the type signature. Grading has been stud-
ied in probabilistic programming for example in [9, 12, 13].

3 Context and Methodology

Our language follows a Bayesian approach to causality which
is consistent with Bayesian probabilistic programming. To in-
fer parameters or causal structures, we consider a prior over
them and use the inference capabilities of the underlying
PPL [25, 26]. This workflow and its limitations are detailed
in [1]. In particular, questions of identifiability (do-calculus)
or partial identifiability need to be addressed separately.

References

[1] [n.d.]. Causal probabilistic programming without tears - ChiRho
documentation. https://basisresearch.github.io/chirho/tutorial_i.html.
Accessed: 2025-10-30.

[2] [n.d.]. ChiRho. https://basisresearch.github.io/chirho. Accessed:
2025-10-30.

[3] [n.d.]. ChiRho Haskell. https://anonymous.4open.science/r/chirho-
haskell-FBCB/. Accessed: 2025-10-30.

[4] [n.d.]. PyWhy, An Open Source Ecosystem for Causal Machine Learn-
ing. https://www.pywhy.org/. Accessed: 2025-10-30.

[5] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer,
Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul
Horsfall, and Noah D. Goodman. 2018. Pyro: Deep Universal Proba-
bilistic Programming. Journal of Machine Learning Research (2018).

[6] Ivi Chatzi, Nina Corvelo Benz, Eleni Straitouri, Stratis Tsirtsis, and
Manuel Gomez-Rodriguez. 2024. Counterfactual token generation in
large language models. arXiv preprint arXiv:2409.17027 (2024).

[7] Swaraj Dash, Younesse Kaddar, Hugo Paquet, and Sam Staton. 2023.
Affine Monads and Lazy Structures for Bayesian Programming. Proc.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

ACM Program. Lang. 7, POPL, Article 46 (Jan. 2023), 31 pages. https:
//doi.org/10.1145/3571239

Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliés. 2016. To-
wards a formal theory of graded monads. In International Conference on
Foundations of Software Science and Computation Structures. Springer,
513-530.

Bruno Gavranovi¢. 2024. Fundamental Components of Deep Learn-
ing: A category-theoretic approach. Ph. D. Dissertation. University of
Strathclyde.

Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. 2019. Causal infer-
ence by string diagram surgery. In Foundations of Software Science
and Computation Structures: 22nd International Conference, FOSSACS
2019, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11,
2019, Proceedings 22. Springer, 313-329.

Jean Kaddour, Aengus Lynch, Qi Liu, Matt] Kusner, and Ricardo Silva.
2022. Causal machine learning: A survey and open problems. arXiv
preprint arXiv:2206.15475 (2022).

Alexander K Lew, Marco F Cusumano-Towner, Benjamin Sherman,
Michael Carbin, and Vikash K Mansinghka. 2019. Trace types and
denotational semantics for sound programmable inference in proba-
bilistic languages. Proceedings of the ACM on Programming Languages
4, POPL (2019), 1-32.

Jack Liell-Cock and Sam Staton. 2025. Compositional imprecise proba-
bility: A solution from graded monads and markov categories. Proceed-
ings of the ACM on Programming Languages 9, POPL (2025), 1596-1626.

Conor McBride and Ross Paterson. 2008. Applicative programming
with effects. Journal of Functional Programming 18, 1 (2008), 1-13.
https://doi.org/10.1017/50956796807006326

Dominic Orchard, Philip Wadler, and Harley Eades III. 2020. Unifying
graded and parameterised monads. Proc. MSFP 2020 (2020).

Judea Pearl. 2009. Causality. Cambridge University Press.

Yura Perov, Logan Graham, Kostis Gourgoulias, Jonathan Richens,
Ciaran Lee, Adam Baker, and Saurabh Johri. 2020. Multiverse: causal
reasoning using importance sampling in probabilistic programming.
In Symposium on advances in approximate bayesian inference. PMLR,
1-36.

Du Phan, Neeraj Pradhan, and Martin Jankowiak. 2019. Composable
Effects for Flexible and Accelerated Probabilistic Programming in
NumPyro. arXiv preprint arXiv:1912.11554 (2019).

Edoardo Pona, Milad Kazemi, Yali Du, David Watson, and Nicola
Paoletti. 2025. Abstract Counterfactuals for Language Model Agents.
arXiv preprint arXiv:2506.02946 (2025).

Bernhard Scholkopf. 2022. Causality for machine learning. In Proba-
bilistic and causal inference: The works of Judea Pearl. 765-804.

Adam Scibior, Zoubin Ghahramani, and Andrew D Gordon. 2015.
Practical probabilistic programming with monads. In Proceedings of
the 2015 ACM SIGPLAN Symposium on Haskell. 165-176.

Adam Scibior, Ohad Kammar, and Zoubin Ghahramani. 2018. Func-
tional programming for modular Bayesian inference. Proceedings of
the ACM on Programming Languages 2, ICFP (2018), 1-29.

Adam Michat Scibior. 2019. Formally justified and modular Bayesian
inference for probabilistic programs. Ph. D. Dissertation.

Zenna Tavares, James Koppel, Xin Zhang, Ria Das, and Armando
Solar-Lezama. 2021. A language for counterfactual generative models.
In International conference on machine learning. PMLR, 10173-10182.

Sam Witty, David Jensen, and Vikash Mansinghka. 2021. SBI: A
Simulation-Based Test of Identifiability for Bayesian Causal Inference.
arXiv preprint arXiv:2102.11761 (2021).

Sam A Witty. 2023. Bayesian Structural Causal Inference with Proba-
bilistic Programming. Ph.D. Dissertation. University of Massachusetts
Ambherst.

https://basisresearch.github.io/chirho/tutorial_i.html
https://basisresearch.github.io/chirho
https://anonymous.4open.science/r/chirho-haskell-FBCB/
https://anonymous.4open.science/r/chirho-haskell-FBCB/
https://www.pywhy.org/
https://doi.org/10.1145/3571239
https://doi.org/10.1145/3571239
https://doi.org/10.1017/S0956796807006326

	1 Introduction and Contributions
	2 Causal Reasoning
	2.1 Causal reasoning, by inspection
	2.2 Causal reasoning, systematically
	2.3 Causal reasoning, automatically

	3 Context and Methodology
	References

