

### {Algebraic, Operational, Denotational} Semantics for Classical Controlled Quantum Communication

<u>Theo Wang</u>, Sam Staton University of Oxford

#### What?

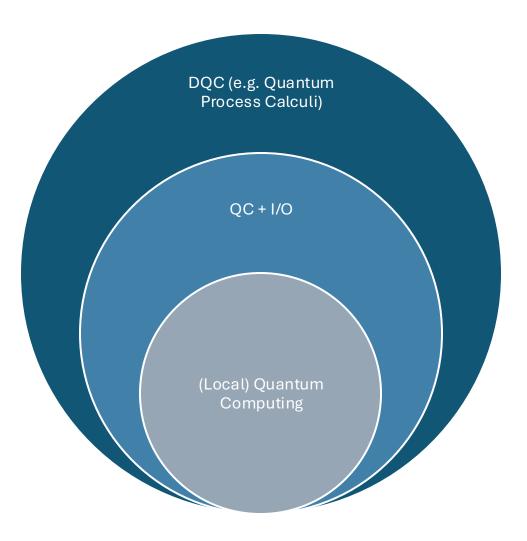
• ... Quantum Communication

$$r = in(); q = apply_U(r); out(q)$$

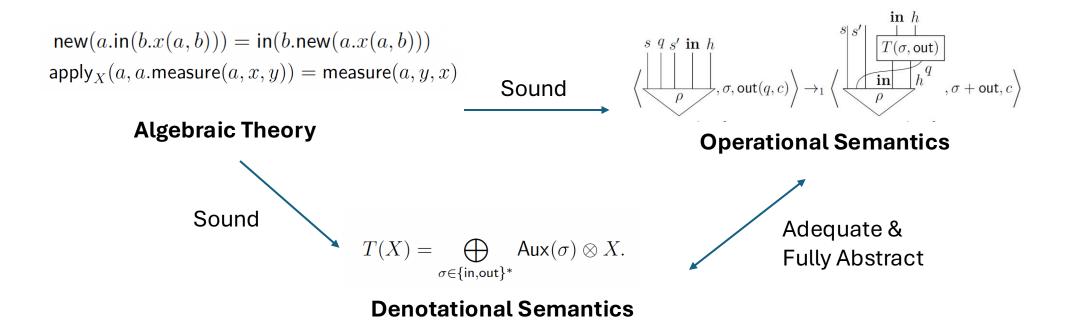
• Classically-Controlled ...

## Why?

- DQC
- Quantum Protocols

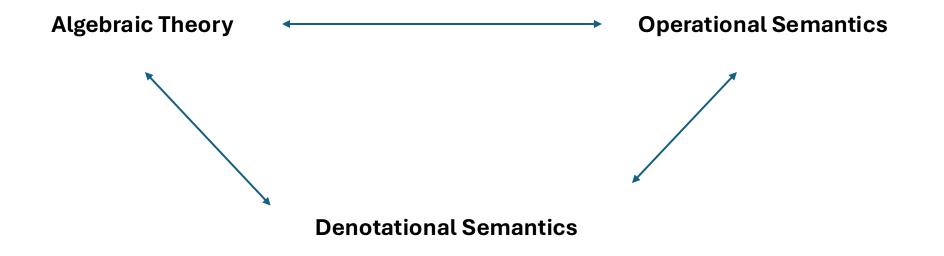


#### How?



## **Qubit Quantum Computing**

### **Starting Point**



### Algebraic Theory **QUANTUM** (POPL '15)

**Operations op** :  $(p \mid m_1...m_k)$ 

 $\begin{array}{ll} \mathsf{new}: (0 \mid 1) & \mathsf{measure}: (1 \mid 0, 0) \\ & \mathsf{apply}_U: (n \mid n) \end{array}$ 

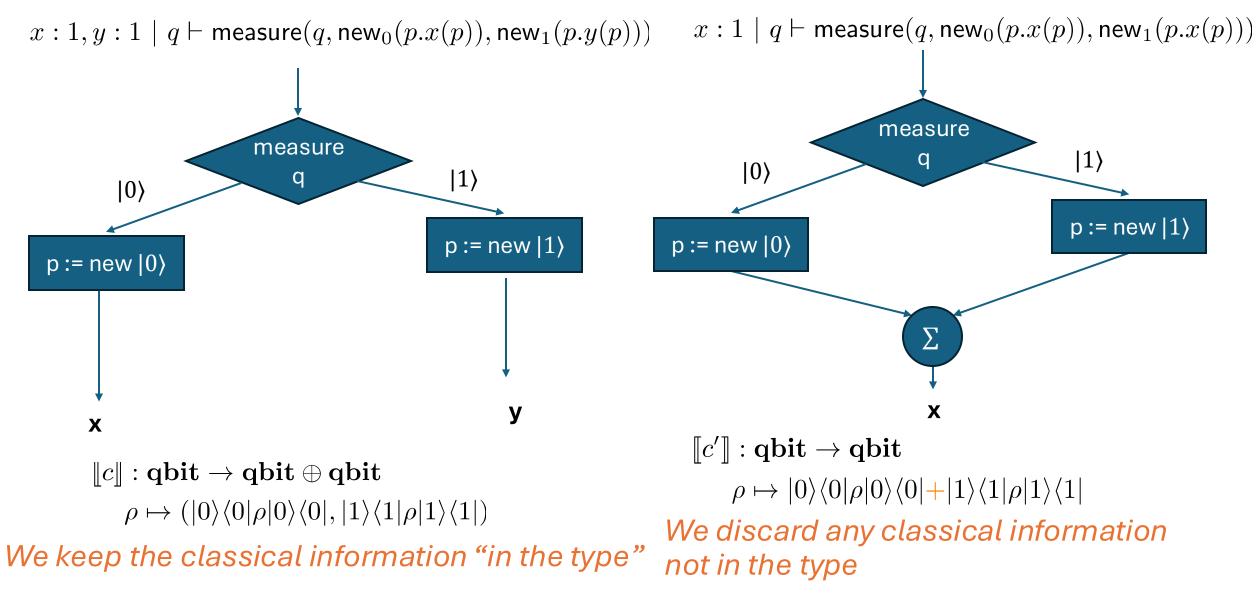
**Equations**  $\Gamma \mid \Delta \vdash c = c'$ 

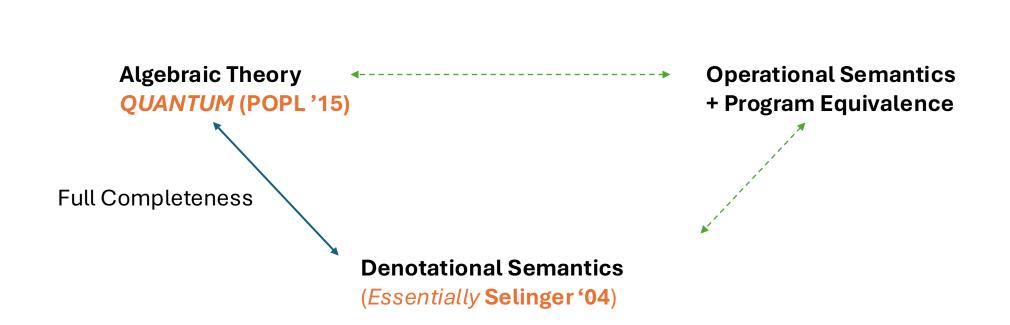
**Terms**  $x_1 : m_1 ... x_k : m_k \mid q_1 ... q_p \vdash c$   $new(q.c) measure(q, c_0, c_1)$   $apply_U(\vec{q}, \vec{q}'.c)$ e.g.  $new(q.apply_H(q, q.measure(q, x, y)))$ **Models**  $\llbracket c \rrbracket : \llbracket p \rrbracket \rightarrow \sum_i \llbracket m_i \rrbracket$ 

e.g.  $x:0,y:0 \mid \cdot \vdash \mathsf{new}(q.\mathsf{measure}(q,x,y)) = x$ 

**Fully Complete** Denotational Model:  $\llbracket c \rrbracket : \mathbf{qbit}^{\otimes p} \to \bigoplus_i \mathbf{qbit}^{\otimes m_i}$ in the category of CP(TP) maps

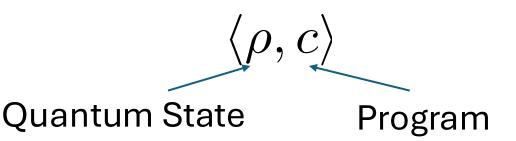
#### Feature: Classical Branching

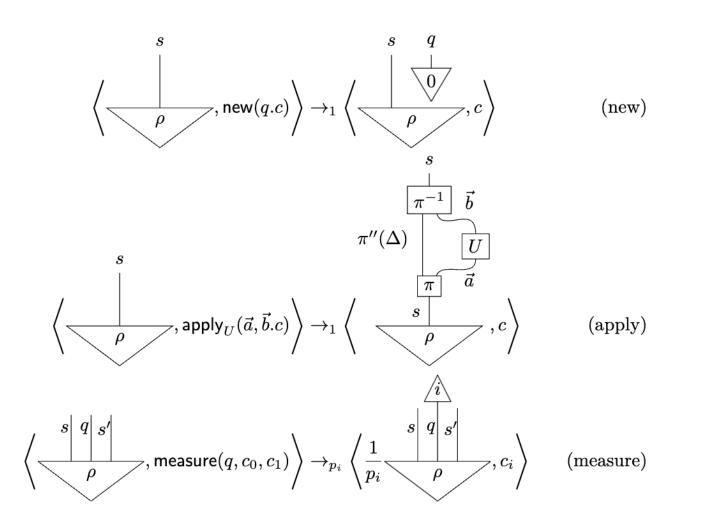




#### So far...

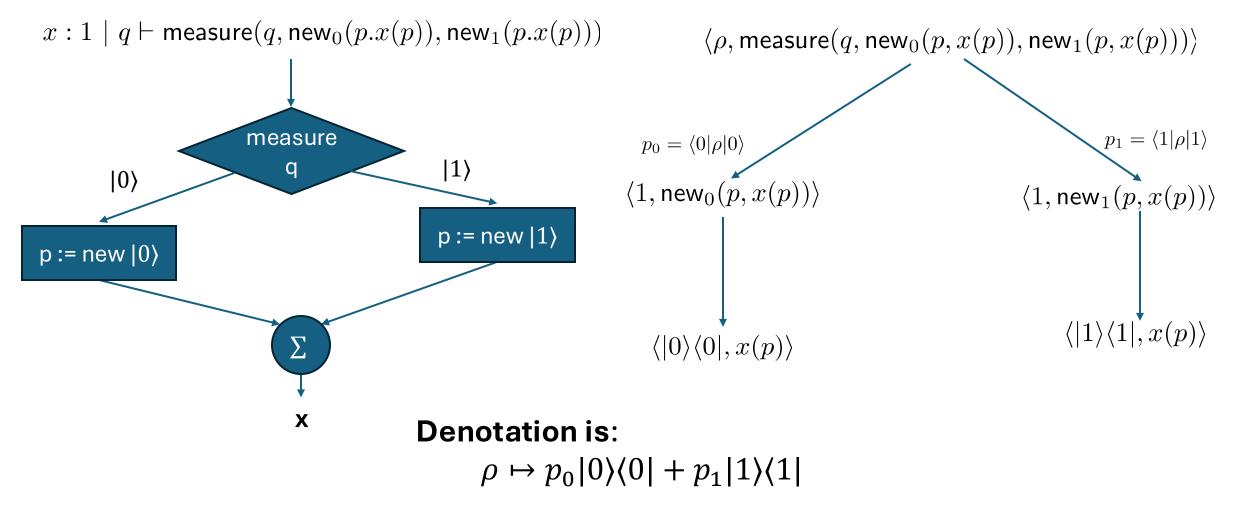
### **Operational Semantics**





### Defining a Program Equivalence

Strategy: Construct Denotation from the operational semantics



#### Theorem:

$$\llbracket c \rrbracket_x(\rho) = \sum_{\psi} \Pr(\langle \rho, c \rangle \to^* \langle \psi, x(\Delta_{\psi}) \rangle) \cdot \psi$$

#### **Corollary**:

Two programs  $\Gamma | \Delta \vdash c, c'$  are denotationally equal if and only if for all  $x \in \Gamma$ 

$$\sum_{\psi} \Pr(\langle \rho, c \rangle \to^* \langle \psi, x(\Delta_{\psi}) \rangle) \cdot \psi = \sum_{\psi} \Pr(\langle \rho, c' \rangle \to^* \langle \psi, x(\Delta_{\psi}) \rangle) \cdot \psi$$

#### Recap

Algebraic Theory

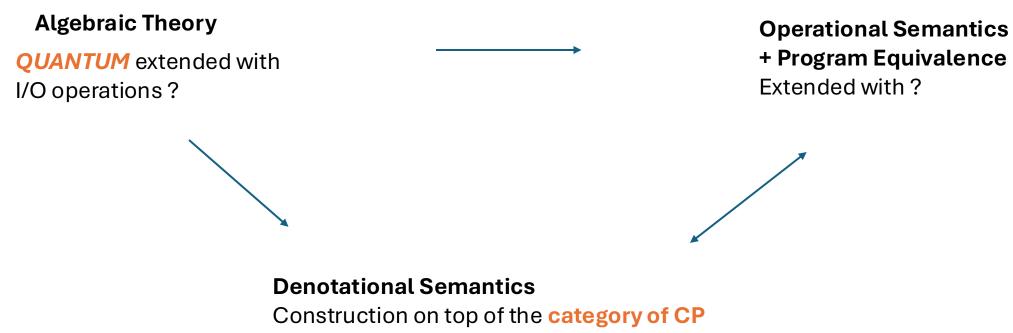
QUANTUM (POPL '15)

Operational Semantics + Program Equivalence Essentially the same as Denotational Semantics

Denotational Semantics In Category of CP maps

# Quantum Computing + Quantum Communication

#### Goal



maps?

## I/O & QUANTUM: An Algebraic Theory for Quantum Communication

**<u>Operations</u>** op :  $(p \mid m_1...m_k)$ 

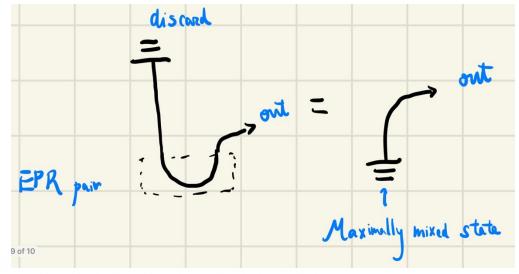
 $\begin{aligned} \mathsf{new} &: (0 \mid 1) \quad \mathsf{measure} : (1 \mid 0, 0) \\ \mathsf{apply}_U &: (n \mid n) \end{aligned}$ 

out : 
$$(1 \mid 0)$$
  
in :  $(0 \mid 1)$ 

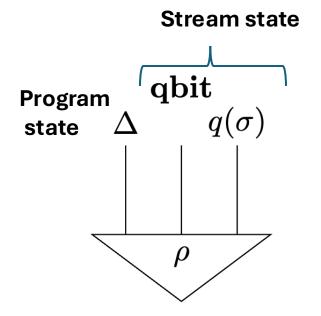
**Equations**  $\Gamma \mid \Delta \vdash c = c'$ 

- 1- Input/Output <mark>do not</mark> commute with each other
- 2- Input/Output commute with "local" operations

measure(a, out(b, x), out(b, y)) = out(b, measure(a, x, y))



#### **Operational Semantics**

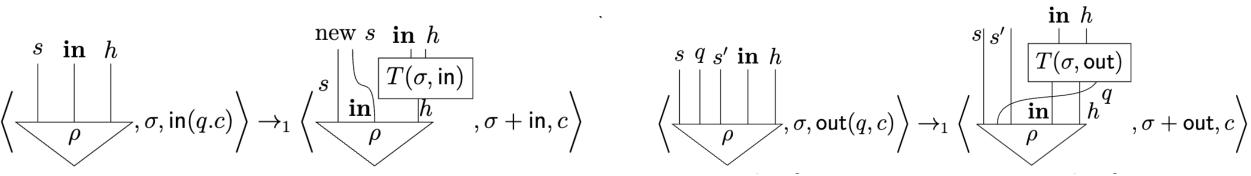


#### A "quantum stream" to handle inputs and outputs

State  $\sigma \in \{\text{in, out}\}^*$ Stream  $(q, T) \in \text{Stream } X_0$  where

- $q(\sigma) \in Ob(CP)$  is the shape of the hidden state
- $T(\sigma, in): \Delta \rightarrow qbit \otimes \Delta$ and  $T(\sigma, out): qbit \otimes \Delta \otimes qbit \rightarrow qbit \otimes \Delta$ are **state evolution maps**

#### Configuration $\langle ho, \sigma, c angle$ and Operational Semantics



## Program Equivalence $\Gamma \mid \Delta \vdash c \simeq_{qu} c'$

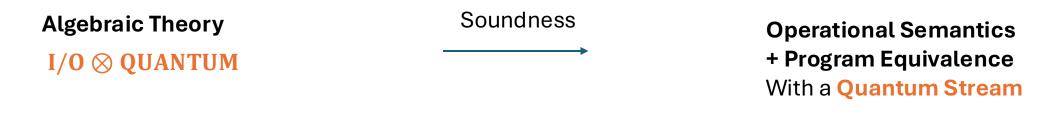
Without communication: merge all branches with the same continuation

$$\begin{array}{l} \forall \rho. \ \forall x. \ \sum_{\psi} \Pr(\langle \rho, c \rangle \rightarrow^* \langle \psi, x(\Delta_{\psi}) \rangle) \cdot \psi = \sum_{\psi} \Pr(\langle \rho, c' \rangle \rightarrow^* \langle \psi, x(\Delta_{\psi}) \rangle) \cdot \psi \\ \text{Initial Classical} \\ \text{State Information} \end{array}$$

With communication: merge all branches with the same continuation *and* the same I/O trace

$$\begin{array}{l} \forall \rho, (q, T), \sigma, \forall x, \sigma', \sum_{\psi} \Pr(\langle \rho, \sigma, c \rangle \to^* \langle \psi, \sigma + \sigma', x(\Delta_{\psi}) \rangle) \cdot \psi \\ \text{Stream and} \\ \text{Initial State} \end{array} \begin{array}{l} \text{Classical} \\ \text{Information} \end{array} = \sum_{\psi} \Pr(\langle \rho, \sigma, c' \rangle \to^* \langle \psi, \sigma + \sigma', x(\Delta_{\psi}) \rangle) \cdot \psi \\ \end{array}$$

## Theorem: Operational semantics + Program Equivalence form a model of I/O 🛞 QUANTUM



$$\Gamma \mid \Delta \vdash c = c'$$
 implies  $\Gamma \mid \Delta \vdash c \simeq_{qu} c'$ 

#### Next Step

Algebraic Theory I/O  $\otimes$  QUANTUM Soundness

Operational Semantics + Program Equivalence With a Quantum Stream

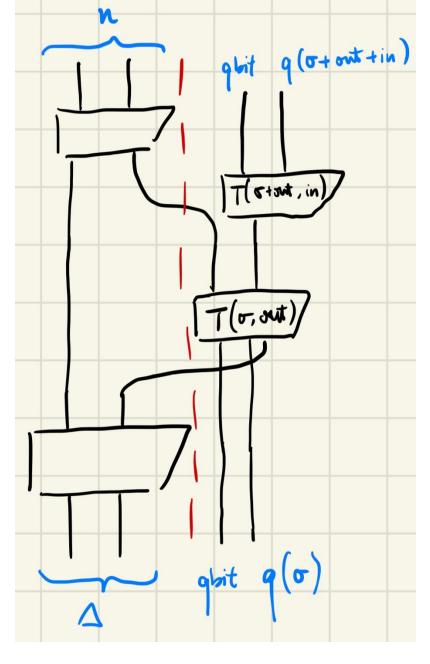
**Denotational Semantics** Construction on top of the **category of CP maps**?

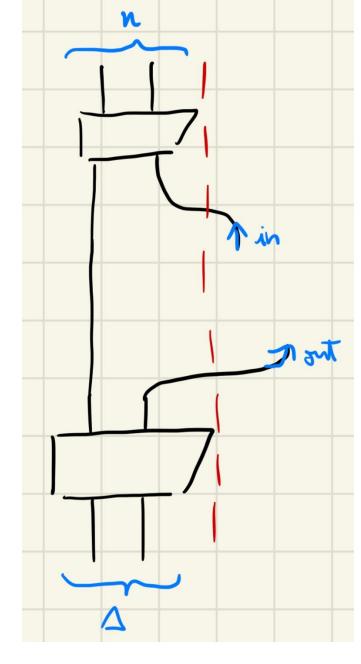
#### A Monadic Denotational Semantics

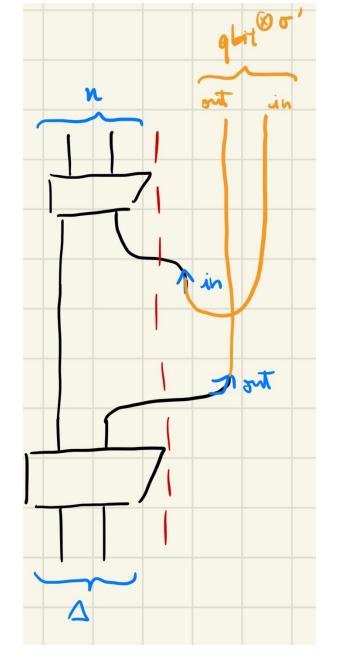
$$\begin{aligned} & \mathsf{Our \, program \, equivalence} \\ & \forall \rho, (q, T), \sigma. \ \forall x, \sigma'. \ \sum_{\psi} \Pr(\langle \rho, \sigma, c \rangle \to^* \langle \psi, \sigma + \sigma', x(\Delta_{\psi}) \rangle) \cdot \psi \\ & = \sum_{\psi} \Pr(\langle \rho, \sigma, c' \rangle \to^* \langle \psi, \sigma + \sigma', x(\Delta_{\psi}) \rangle) \cdot \psi \end{aligned}$$

#### Consider

$$\llbracket c \rrbracket_{\sigma',(x:n)}^{(q,T),\sigma}(\rho) = \sum_{\psi} \Pr(\langle \rho, \sigma, c \rangle \to^* \langle \psi, \sigma + \sigma', x(\Delta_{\psi}) \rangle) \cdot \psi$$







 $\llbracket c \rrbracket_{\sigma',(x:n)}^{(q,T),\sigma}(\rho) = \sum_{\psi} \Pr(\langle \rho, \sigma, c \rangle \to^* \langle \psi, \sigma + \sigma', x(\Delta_{\psi}) \rangle) \cdot \psi$ 

 $[\![c]\!]_{\sigma',(x:n)}:?$ 

 $\llbracket c \rrbracket_{\sigma',(x:n)} : \mathbf{qbit}^{\otimes \Delta} o \mathbf{qbit}^{\otimes n} \otimes \mathbf{qbit}^{\otimes \sigma'}$ 

#### A Monadic Denotational Semantics

$$\llbracket c \rrbracket : \mathbf{qbit}^{\otimes \Delta} \to \bigoplus_{\sigma, (x:n) \in \Gamma} \mathbf{qbit}^{\otimes \sigma} \otimes \mathbf{qbit}^{\otimes n}$$

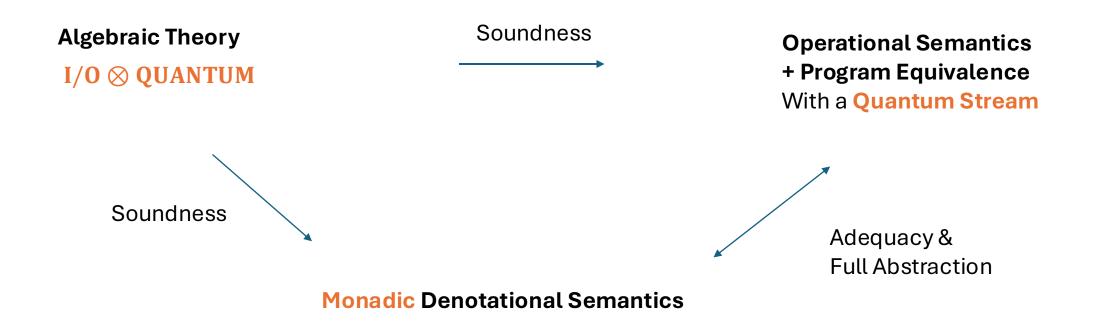
Equivalently:  $\llbracket c \rrbracket : \llbracket \Delta \rrbracket \to T(\llbracket \Gamma \rrbracket)$ 

where

$$T: \mathbf{CP}^{\infty} \to \mathbf{CP}^{\infty}$$
$$X \mapsto \bigoplus_{\sigma} \mathbf{qbit}^{\otimes \sigma} \otimes X$$

Theorem (Adequacy and Full Abstraction):  $\Gamma \mid \Delta \vdash c \simeq_{qu} c' \iff \llbracket c \rrbracket = \llbracket c' \rrbracket$ 

#### TADAAAAA



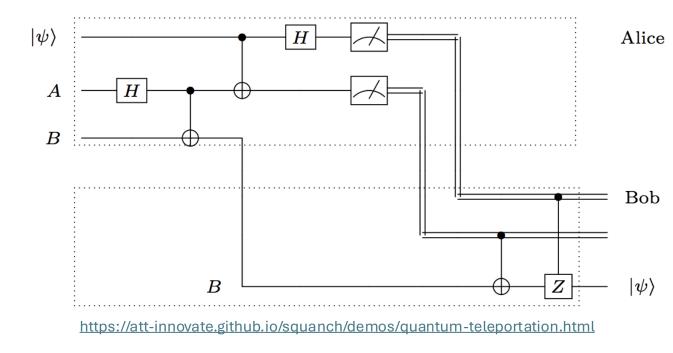
#### Future Work

- Complete model?
- Connections to quantum process calculi?
- Connections to Higher Order Quantum Computing?

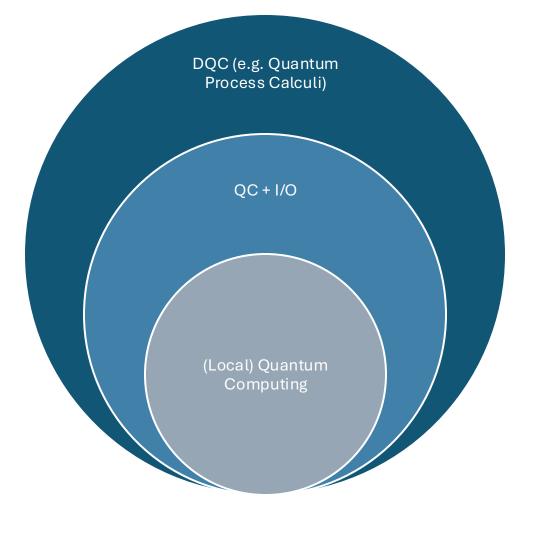


Preprint link: <a href="https://theo.wang/works/2024-09-MSc-thesis">https://theo.wang/works/2024-09-MSc-thesis</a>

#### Garbage Slides



A: q = generate\_epr(); out(q); [...]



B: 
$$q = in(); ...$$