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We systematically study the semantics of classically controlled quantum communication. We
present a parameterised algebraic theory for classically controlled quantum I/O, and give two sound
models: a quantum-stream-based operational semantics, and a monadic denotational semantics. We
further show that the two models correspond to the same notion of communication in the sense
that the latter is adequate and fully abstract with respect to the former.

1 Introduction
One of the most promising avenues of scaling quantum computing is by distributed
quantum computing (e.g. [1]).When this happens, wemight want to run quantum programs
which send and receive qubits, like:

q: qbit = in(); q = apply(hadamard , q); out(q)

where in receives a qubit from a fixed channel, and out sends a qubit to a fixed channel.
Moreover, to enable a natural programmingmodel, we need to express classically controlled
communication (sending/receiving qubits based on measurement outcomes), like:

p: qbit = in(); q: qbit = new(|0>);
if (measure(p) == |1>) { out(q); } else { skip; }

It is thus imperative to study such quantum communication primitives in the lense of
programming languages. This could ultimately allow us to develop verification methods
for distributed quantum programs, propose admissible compiler rewrites, and suggest
good language designs. To date, quantum communication has mostly been studied in the
context of quantum concurrency and, in particular, quantum process calculi [2, 4, 8, 15]
(QPC), which extend classical process calculi with quantum computing primitives and
quantum message-passing (sending/receiving qubits). However, the inherent complexity
of concurrency makes it difficult to isolate the challenges of communication itself.

In this work (preprint at [14]), we study the individual operations of quantum communi-
cation in isolation as algebraic effects, following the tradition of Plotkin and Power [11].
We propose a new algebraic theory for quantum communication by building on [13] a
complete theory for quantum computing. We then study two, complementary models
of the theory. The first one is an operational semantics (Section 3.1), demonstrating the
computational model we have in mind. The second one is an elegant monadic denotational
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semantics (Section 3.2). Finally, we show that the latter is adequate and fully abstract with
respect to the former (Theorem 3.2).

2 An Algebraic Theory forQuantum Communication
Our starting point is [13], a semantics for qubit quantum computation without communi-
cation as a parameterised algebraic theory (a collection of quantum operations along with
an equational theory). The language of well-formed terms is defined by the judgement
Γ | Δ ` 2 , where Δ = @1...@? is a list of parameters (qubit names) and Γ = G1 :<1...G: :<:

is a list of computation variables (continuations) along with their valences (the number of
qubits each continuation takes). The judgement is the least one closed under the following:

(G : ?) ∈ Γ

Γ | 01...0? ` G (01...0?)
Γ | Δ ` C

Γ | c (Δ) ` C
{Γ | Δ, 11...1<8

` C8}8=1...: op : (? |<1...<: )
Γ | Δ, 01...0? ` op(01...0? ; {11...1<8

.C8}8)
where c is a permutation. Intuitively, we think of such a term 2 as a computation which
takes ? qubits, classically branches, and gives one of<1...<: qubits; we can assign it a
‘type’ (? |<1...<: ). This algebraic syntax is convenient because it avoids syntactic sugar,
but it can be straightforwardly made into ordinary programming syntax (see [13] Section
5). Finally, theories can be combined: the disjoint union of two algebraic theories is called
the sum of theories, and the commutative combination (such that every operation in one
commutes with every operation in the other) is called the tensor [6, 14].

The QUANTUM theory is the one defined by operations for state preparation new : (0 | 1),
unitary evolution apply* : (= | =) for each 2= × 2= unitary* , and measurement + classical
control measure : (1 | 0, 0), along with suitable equations. For example, the following
equation capturing the principle of deferred measurement, where for any unitaries *0,*1,
� (*0,*1) is the controlled unitary such that � (*0,*1) |8〉|k 〉 = |8〉|*8k 〉 for 8 = 0, 1.

measure(0, apply* ( ®1, ®1.G ( ®1), apply+ ( ®1, ®1.~ ( ®1))))

= apply� (* ,+ ) ((0, ®1), (0, ®1).measure(0, G ( ®1), ~ ( ®1))) (1)

We now build the theory for quantum communication. We extend QUANTUM with an op-
eration for receiving qubits, in : (0 | 1), and an operation for sending qubits out : (1 | 0).This
way, we are able to express the example programs as G : 0 | · ` in(@.apply� (@, @.out(@, G)))
and G : 0 | · ` in(?.new(@.measure(?, G, out(@, G)))), respectively. Furthermore, we add
equations such that in and out commute with every existing operation in QUANTUM.
We thus obtain I/O ⊗ QUANTUM, the tensor of the QUANTUM theory with the free I/O
theory, which will be our main object of study. The commutativity equations are crucial to
making the I/O operations compatible with quantum theory. For example, the equation

measure(0, out(1, G), out(1,~)) = out(1,measure(0, G,~)) (2)

which makes out commute with measure is crucial to proving the following equation,
which is a slight tweak of a well-known equivalence in quantum theory:

new(@.apply� (@, @.new(?.apply�- ((@, ?), (@, ?) .out(?,measure(@, G, G))))))
= new(@.apply� (@, @.measure(@, new(?.out(?, G), new(?.apply- (?, ?.out(?, G))))))) (3)
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3 Two Models
We now study two of I/O⊗QUANTUM’s sound models, one operational, one denotational.
The point is to give insight into the theory itself and connect to other methods. Moreover,
there is a risk that tensors of theories collapse (e.g. see the Eckmann-Hilton argument [9])
and so our models show that there is no collapse in this setting.

3.1 Operational Semantics
Strategy. The operational semantics we give to the terms of I/O ⊗ QUANTUM is based
on a quantum stream used to handle I/O. The idea is to have a global quantum state
d : C → ( ⊗ qbit ⊗ � , where ( is the state accessible to the program or the program state,
and � is the state accessible to the stream, or the stream/hidden state. Then, we define
a stream as a state machine which reacts to the program requesting an input qubit or
presenting an output qubit.

Category of CP maps. We interpret quantum states and processes as morphisms in the
category CP, which is the finite biproduct completion of CPM [12], the category of (finite
dimensional) matrix algebras and complete positive maps. In particular, we write qbit ¬
M2(C) as the space of qubits. Conveniently, CP is a biproduct compact closed category,
allowing us to note its morphisms as string diagrams (cf. [3, 5, 14]). Its monoidal structure
defined by the tensor product ⊗ and its unit � defined as the space of 1D matrices C. CP
maps C → � are called ‘states’ and correspond to (unnormalised) density operators, while
morphisms � → C are called ‘effects’ and correspond to the positive quantum observables.

Quantum Stream. Let -0 ∈ CP be the shape of the initial hidden state. Then a stream C in
Stream(-0) consists of: a map @ : {in, out}∗ → Ob CP (such that @(n) = -0) defining the
shape of stream state at every step; and for every f ∈ {in, out}∗, trace-preserving CP maps
) (f, in) : @(f) → qbit ⊗ @(f + in) and ) (f, out) : qbit ⊗ @(f) ⊗ qbit → qbit ⊗ @(f + out)
which determine the evolution of the stream state after an I/O operation.

Operational Semantics. A configuration is a triple 〈d, f, 2〉, where d is a normalised global
state along with an list of qubit labels Δd , f ∈ {in, out}∗ is the current I/O trace, and 2 is the
running program. Given a stream C ∈ Stream(-0), the small-step operational semantics is
given by a transition relation→C

? (where ? indicates the transition probability), defined
inductively with respect to the structure of the program in a standard way. A term is
evaluated probabilistically until a continuation call is reached in which case the program
terminates. For example, for the output operation we have the following rule

〈
d

B in ℎ@ B′

, f, out(@, 2)
〉
→1

〈
d

B
in ℎ

@

B′

ℎin

) (f, out)

, f + out, 2
〉

(out)

which performs the output and updates the stream state. The full definition is given in [14]
Figure 4.4.
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Program Equivalence. We say that Γ | Δ ` 21 '@D 22 if for all -0 ∈ CP, C = (@,) ) ∈
Stream(-0), f0 ∈ {in, out}∗, and d : C → qbit⊗|Δ | ⊗ qbit ⊗ @(f0),∑

k

Pr(〈d, f, 21〉 →∗ 〈k, f5 , G (Δk )
〉
) ·k =

∑
k

Pr(〈d, f, 22〉 →∗ 〈k, f5 , G (Δk )
〉
) ·k (4)

for any (G : =) ∈ Γ and I/O trace f5 ∈ {in, out}∗. Intuitively, this is the ‘right’ definition
because it sums over all the execution paths which give the same ‘type level’ outcome, i.e.
presenting the same I/O trace and calling the same continuation. And indeed we have:

Theorem 3.1 (Operational Semantics gives a model ([14] Theorem 4.3.25)). Terms of
I/O ⊗ QUANTUM modulo '@D gives a sound model of I/O ⊗ QUANTUM.

Rather interestingly, our program equivalence has a ‘denotational’ flavour: it relies on
introspecting the program states at termination instead of using a syntactic, contextual
equivalence. This motivates seeking for a denotational semantics.

3.2 Denotational Semantics
Strategy. Following the traditions of algebraic theories of effects [11], we construct a monad
and interpret I/O ⊗ QUANTUM in its Kleisli category. In particular, our theory is a tensor
between I/O and QUANTUM. Therefore, instead of using the standard resumptions monad
[6] (which corresponds to a sum of algebraic theories), we construct a free I/O monad
() (- ) = `. .[� , . ] + ($ ⊗ . ) +- ) directly on top of CP, which in some sense embodies the
models of QUANTUM.

Infinite biproducts for CP. To enable the definition of an I/O monad in CP, we need to
extend it with infinite coproducts (and thus biproducts). To this end, we construct CP∞ as
the infinite biproduct completion of CPM, following [10]. CPM is first completed to dcpo-
enriched category CPM using [16]. CPM has infinite indexed sums of morphisms

∑
8∈� 58 ,

defined as
⊔

(⊆� (
∑

B∈( 5B). Then, CP∞ is constructed as the infinite biproduct completion
of CPM, and can be shown to inherit compact closure from CPM (see [10] section 4).

TheQuantum I/O Monad. We now define our monad for qubit I/O, ) : CP∞ → CP∞, and
obtain an explicit characterisation by unrolling the fixed point and noting that [qbitin, . ] �
qbitin ⊗ . by compact closure and self-duality.

) (- ) ¬ `. .[qbitin, . ] ⊕ (qbitout ⊗ . ) ⊕ - =
⊕

f∈{in,out}∗
Aux(f) ⊗ - (5)

where Aux(n) ¬ C and for B ∈ {in, out}, Aux(B + f) = qbitB ⊗ Aux(f). Note that the dis-
tinction between qbitin and qbitout is purely for our convenience and has no mathematical
meaning. This definition makes intuitive sense: the trace of I/O operations performed in
a computation determine exactly how many input qubits it depends on, and how many
output qubits it generates, and the order in which they occur. Rather interestingly, however,
the inputs seem to appear ‘on the wrong side’. If we consider a state over ) (- ) (i.e. a
morphism d : C → ) (- )) and only look at its component for a particular trace, say
f = (in, out, in), we get a state over qbitin ⊗ qbitout ⊗ qbitin ⊗ - , wherein the input qubits
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appear on the output side, instead of a map of the form qbitin ⊗ qbitin → qbitout ⊗ - .
However, this is fine because of the Choi-Jamiołkowski isomorphism (equivalently the
compact closure of CP∞):

CP∞(C, qbitin ⊗ qbitout ⊗ qbitin ⊗ - ) � CP∞(qbitin ⊗ qbitin, qbitout ⊗ - ) . (6)

In fact, we can ‘bend the input wires’ back and forth by using the (unnormalised) maximally
entangled state (|Φ〉〈Φ|) and its adjoint CP map (" ↦→ 〈Φ|" |Φ〉) where Φ =

∑
8 |88〉.

Monadic Denotational Semantics. Firstly we define J=K ¬ qbit⊗= . Then, parameter contexts
are interpreted as JΔK ¬ J|Δ|K and computation contexts Γ = G1 : =1...G: : =: as JΓK ¬⊗:

8=1J=8K. Next, we interpret a term Γ | Δ ` 2 as a morphism in the Kleisli category,
J2K : JΔK → ) (JΓK), where

) (JΓK) =
⊕
f

Aux(f) ⊗ JΓK �
⊕

f∈{in,out}∗
(G :=) ∈Γ

Aux(f) ⊗ J=K. (7)

Each operation can also be naturally interpreted according to their type (cf. [14] Figure
5.1). The interesting case is once again the input operator: JinK : C → ) (qbit) is defined as

JinK ¬ injin ◦
qbit

in qbit
 (8)

where the ‘cup’ corresponds here to the (unnormalised) maximally entangled state.

Adequacy and Full abstraction We can understand J2K as a collection of maps of the form
J2Kf,(G :=) : JΔK → Aux(f) ⊗ J=K, indexed by the I/O trace f and the continuation G that the
program ends up calling. This is particularly neat as it corresponds exactly to the program
equivalence previously defined: two program are equal iff they are equal on the sums of
all reduction paths resulting in the same I/O trace f and continuation call G . This exact
insight allows us to prove the following theorem:

Theorem 3.2 (Adequacy and Full Abstraction ([14] Theorems 5.3.4 and 5.3.6)). For all
Γ | Δ ` 21, 22, Γ | Δ ` 21 '@D 22 if and only if J21K = J22K.

As a corollary, it follows that our denotational semantics form amodel of I/O⊗QUANTUM:

Theorem 3.3 (Denotational Semantics gives a model ([14] Corollary 5.4.2)). The object C
forms a model of I/O ⊗ QUANTUM in the opposite of the Kleisli category of ) .

4 Conclusion and Future Work
We proposed the first algebraic theory for classically controlled qubit quantum communi-
cation, I/O ⊗QUANTUM, and gave two complementary models: a quantum-stream-based
operational semantics and an adequate and fully abstract monadic denotational semantics.
A next step is to understand how this work relates to quantum process calculi [2, 4, 8, 15]
and higher order quantum computing [7, 10].



6 Theo Wang and Sam Staton

References
[1] Marcello Caleffi, Michele Amoretti, Davide Ferrari, Jessica Illiano, Antonio Manzalini, and Angela Sara

Cacciapuoti. 2024. Distributed quantum computing: A survey. Computer Networks 254 (Dec. 2024),
110672. https://doi.org/10.1016/j.comnet.2024.110672

[2] Lorenzo Ceragioli, Fabio Gadducci, Giuseppe Lomurno, and Gabriele Tedeschi. 2024. Quantum Bisimi-
larity via Barbs and Contexts: Curbing the Power of Non-deterministic Observers. Proc. ACM Program.
Lang. 8, POPL, Article 43 (jan 2024), 29 pages. https://doi.org/10.1145/3632885

[3] Bob Coecke and Aleks Kissinger. 2017. Picturing Quantum Processes: A First Course in Quantum Theory
and Diagrammatic Reasoning. Cambridge University Press.

[4] Simon Gay and Rajagopal Nagarajan. 2004. Communicating Quantum Processes. arXiv:quant-
ph/0409052 [quant-ph] https://arxiv.org/abs/quant-ph/0409052

[5] Chris Heunen and Jamie Vicary. 2019. Categories for Quantum Theory: An Introduction. Oxford Uni-
versity Press. https://doi.org/10.1093/oso/9780198739623.001.0001 arXiv:https://academic.oup.com/-
book/43710/book-pdf/50991591/9780191060069_web.pdf

[6] Martin Hyland, Gordon Plotkin, and John Power. 2006. Combining effects: Sum and tensor. Theoretical
Computer Science 357, 1 (2006), 70–99. https://doi.org/10.1016/j.tcs.2006.03.013 Clifford Lectures and the
Mathematical Foundations of Programming Semantics.

[7] Aleks Kissinger and Sander Uijlen. 2019. A categorical semantics for causal structure. Logical Methods in
Computer Science 15 (2019).

[8] Marie Lalire and Philippe Jorrand. 2004. A Process Algebraic Approach to Concurrent and Distributed
Quantum Computation: Operational Semantics. arXiv:quant-ph/0407005 [quant-ph] https://arxiv.org/
abs/quant-ph/0407005

[9] nLab authors. 2024. Eckmann-Hilton argument. https://ncatlab.org/nlab/show/Eckmann-Hilton+
argument. Revision 37.

[10] Michele Pagani, Peter Selinger, and Benoît Valiron. 2013. Applying quantitative semantics to higher-order
quantum computing. CoRR abs/1311.2290 (2013). arXiv:1311.2290 http://arxiv.org/abs/1311.2290

[11] Gordon Plotkin and John Power. 2002. Notions of Computation Determine Monads. In Foundations of
Software Science and Computation Structures, Mogens Nielsen and Uffe Engberg (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 342–356.

[12] Peter Selinger. 2007. Dagger Compact Closed Categories and Completely Positive Maps: (Extended
Abstract). Electronic Notes in Theoretical Computer Science 170 (2007), 139–163. https://doi.org/10.1016/j.
entcs.2006.12.018 Proceedings of the 3rd International Workshop on Quantum Programming Languages
(QPL 2005).

[13] Sam Staton. 2015. Algebraic Effects, Linearity, and Quantum Programming Languages. In Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai,
India) (POPL ’15). Association for Computing Machinery, New York, NY, USA, 395–406. https://doi.org/
10.1145/2676726.2676999

[14] Théo Wang. 2024. Algebraic Theories andQuantum Communication. Master’s thesis. University of Oxford,
Oxford, United Kingdom. https://theo.wang/works/2024-09-MSc-thesis

[15] Mingsheng Ying, Yuan Feng, Runyao Duan, and Zhengfeng Ji. 2010. An Algebra of Quantum Processes.
arXiv:0707.0330 [quant-ph] https://arxiv.org/abs/0707.0330

[16] Dongsheng Zhao and Taihe Fan. 2010. Dcpo-completion of posets. Theoretical Computer Science 411, 22
(2010), 2167–2173. https://doi.org/10.1016/j.tcs.2010.02.020

https://doi.org/10.1016/j.comnet.2024.110672
https://doi.org/10.1145/3632885
https://arxiv.org/abs/quant-ph/0409052
https://arxiv.org/abs/quant-ph/0409052
https://arxiv.org/abs/quant-ph/0409052
https://doi.org/10.1093/oso/9780198739623.001.0001
https://arxiv.org/abs/https://academic.oup.com/book/43710/book-pdf/50991591/9780191060069_web.pdf
https://arxiv.org/abs/https://academic.oup.com/book/43710/book-pdf/50991591/9780191060069_web.pdf
https://doi.org/10.1016/j.tcs.2006.03.013
https://arxiv.org/abs/quant-ph/0407005
https://arxiv.org/abs/quant-ph/0407005
https://arxiv.org/abs/quant-ph/0407005
https://ncatlab.org/nlab/show/Eckmann-Hilton+argument
https://ncatlab.org/nlab/show/Eckmann-Hilton+argument
https://ncatlab.org/nlab/revision/Eckmann-Hilton+argument/37
https://arxiv.org/abs/1311.2290
http://arxiv.org/abs/1311.2290
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1145/2676726.2676999
https://doi.org/10.1145/2676726.2676999
https://theo.wang/works/2024-09-MSc-thesis
https://arxiv.org/abs/0707.0330
https://arxiv.org/abs/0707.0330
https://doi.org/10.1016/j.tcs.2010.02.020

	Abstract
	1 Introduction
	2 An Algebraic Theory for Quantum Communication
	3 Two Models
	3.1 Operational Semantics
	3.2 Denotational Semantics

	4 Conclusion and Future Work
	References

