
Algebraic Theories and Quantum
Communication

Théo Chengkai Wang

Balliol College

University of Oxford

Submitted in partial completion of the

MSc Advanced Computer Science

Michaelmas 2024

Acknowledgements

To my supervisor, Sam: thank you for your passion, enthusiasm and endless streams of ideas
in our weekly meetings, but also your kindness, patience, support and mentorship throughout
these last four months. This thesis would not have happened without you.

To Sam’s group: thank you for the fun we had together, especially because I learnt so much
from every one of you. Also thank you for all the helpful comments, ideas and discussions.
Specifically to Paolo, thank you for teaching me coends and the Day convolution.

To the Quantum group and the friends I made thanks to the joy of quantum courses (and
trauma of the mini-projects): thank you for having me at the MSc seminars, thank you for all
your helpful comments, and thank you for the fun we had together.

To Bartek: thank you for your help and support throughout the other half of the year. This
year definitely would not have gone this smoothly without your presence.

To Gabriele Tedeschi: thank you for the helpful discussions we had about quantum process
calculi.

To PLDI, thank you for making me realise that I prefer theory.

To my friends, my family, and Lily, thank you for everything.

Abstract

With the advent of quantum computing and communication comes the need for corresponding
programming language primitives. In this dissertation, we study a notion of classically controlled
quantum communication (sending and receiving qubits) using Staton’s language of parameterised
algebraic theories (PAT) [67]. More specifically, we start by showing the well-formedness of the
standard combinations of algebraic theories (sums and tensors) for PATs. Then, we define a PAT
for quantum communication, I/O ⊗ QUANTUM, as the tensor of a standard I/O theory [31] and
Staton’s complete axiomatisation for qubit quantum computing QUANTUM [67]. Finally, we
give two complementary models to this algebraic theory: one operational and one denotational.
The first model is based on an operational semantics where the program sends and receives
qubits to and from an environment modelled by a quantum stream. It concretely demonstrates
the notion of quantum communication and ensures that our theory is non-degenerate (unlike
the Eckmann-Hilton setting). The second model is based on an elegant denotational semantics,
constructed as a free I/O monad on CP∞, the category of matrix algebras and CP maps
completed with infinite biproducts [52]. We show that these two models correspond to the same
notion of communication in the sense that the denotational model is adequate and fully abstract
with respect to the operational model.

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Contributions . 4

1.2 Related Work . 5

1.3 Outline . 9

2 Background 11

2.1 Basic Category Theory . 11

2.1.1 Categories . 11

2.1.2 Monoidal categories . 13

2.1.3 Premonoidal categories . 16

2.2 Universal Algebra and the algebraic theory of effects 17

2.2.1 Syntactic notion of algebraic theories . 17

2.2.2 Semantic notions of algebraic theories . 19

2.2.3 Algebraic Effects . 22

2.3 Quantum Computing and String Diagrams . 24

2.3.1 Quantum Computing . 24

2.3.2 Compact closed categories and String Diagrams: a CQM primer 31

2.3.3 The category of finite dimensional C* algebras and CP maps 37

vii

viii Contents

3 Sums and Tensors of Parameterised Algebraic Theories 41

3.1 Syntactic Framework for Single-Sorted Parameterised Algebraic Theories 42

3.1.1 Syntactic framework . 42

3.1.2 Models . 45

3.2 From presentations to [Ctx0,Set]-Enriched Lawvere Theories 46

3.2.1 Enriched Lawvere Theories: enrichment or actegory 46

3.2.2 Explicit characterisation of the theory generated from a presentation . . 49

3.3 Sums and Tensors of presented theories . 55

3.3.1 A premonoidal product from the action and explicit characterisation . . . 55

3.3.2 Translation of Sequencing and Premonoidality 58

3.3.3 Sums . 61

3.3.4 Tensors . 62

4 An Algebraic Theory for Quantum Communication 65

4.1 The Theory . 65

4.1.1 Starting point: algebraic theory for qubit quantum computing 65

4.1.2 The theory to be studied: I/O ⊗ QUANTUM 67

4.2 An Operational Semantics for I/O ⊗ QUANTUM 69

4.2.1 Syntax and Type System . 70

4.2.2 Operational Semantics . 72

4.2.3 Properties . 76

4.3 Program Equivalence . 78

4.3.1 Notions of chained reduction . 78

4.3.2 A first notion of program equivalence . 79

4.3.3 A ‘quantum’ equivalence . 80

4.3.4 Basic Properties . 81

4.3.5 Reduction Paths and Compatibility with Substitution 83

4.3.6 Satisfying equations of I/O ⊗ QUANTUM 91

Contents ix

5 A Monadic Denotational Semantics 97

5.1 Motivation . 97

5.2 Constructing the Quantum I/O Monad . 99

5.2.1 The Free I/O Monad and the Resumptions Monad 99

5.2.2 Infinite Biproducts for CP . 101

5.2.3 Explicit Definition in CP∞ and Properties 103

5.2.4 Denotational Semantics . 104

5.3 Results with respect to the Operational Semantics 109

5.3.1 Preliminaries . 109

5.3.2 Proof of Main Result . 110

5.3.3 Corollaries: Adequacy and Full Abstraction 114

5.4 Results with respect to the PAT . 116

6 Conclusion 119

6.1 Summary . 119

6.2 Future Work . 120

References 121

List of Figures

1.1 Venn diagram of expressivity of the different quantum programming models. QC
denotes quantum circuits, QC+I/O denotes quantum I/O, and QPC denotes
quantum process calculi. 2

3.1 Typing rules for parameterised algebraic theories 42

4.1 Algebraic Theory for Qubit Quantum Computing in [67] 66

4.2 Commutativity equations in I/O ⊗ QUANTUM 68

4.3 Alternative typing rules for I/O ⊗ QUANTUM, where σ is taken as an arbitrary
permutation. 71

4.4 Operational semantics for quantum communication 75

4.5 Definition for the Reduction Path Path (T) where T is an instance of the typing
relation. 84

4.6 Interpretation of path P with stream t = (q, T) at state σ. Note that unlabelled
wires are of type qbit, and that Γ′′ , Γ, x : n,Γ′ 87

5.1 Monadic semantics for operations . 105

5.2 Definition of the Connect gadget . 110

xi

List of Tables

3.1 Substructural systems . 44

6.1 Summary of Results in Chapters 4 and 5. Guide to read this table: whether we
know that A implies B is indicated in the cell on row A, column B. 119

xiii

1
Introduction

Quantum computing is a promising model of computation which exploits quantum mechanical
phenomena. It has demonstrated provable complexity-theoretic computational advantages to
classical computing. Shor’s seminal algorithm [65], for instance, solves the factoring problem in
polynomial time on a quantum computer, whereas the best classical algorithms are, at best, sub-
exponential. Relatedly, quantum communication emerged both as a way of transmitting quantum
information and as a way to enable distributed quantum computing and alleviate the current
engineering constraints of quantum computers (e.g. [12]). Optical quantum computing, for
instance, studies the use of photons as the information carriers for computing and communication.
Quantum communication protocols such as teleportation [10] as well as cryptographic protocols
such as the BB84 protocol for key distribution [9] have also been developed.

Accompanying the emergence of quantum computing and communication is the field of quantum
programming languages, which can be visualised in fig. 1.1.

On the one hand, for quantum computing without communication, a large proportion of existing
languages are based on the quantum circuit model (labelled as QC in fig. 1.1), a standard
model of quantum computation allowing state preparation, unitary evolution, measurements
and classical control. This includes languages like QPL [63] or Silq [11], as well as quantum
DSLs designed to be embedded in classical host languages, like the quantum I/O monad 1 [5],
Quipper [26] or QWire [53].

Quantum communication, on the other hand, has mostly been studied in the context of quantum
concurrency and quantum process calculi (drawn as ‘QPC’ in fig. 1.1). Quantum process calculi

1The reader should note that the quantum I/O monad is completely different from what we mean by quantum
I/O: it is a monadic interface for quantum computing in Haskell.

1

2 1. Introduction

QC

QC + I/O

QPC

Figure 1.1: Venn diagram of expressivity of the different quantum programming models. QC denotes
quantum circuits, QC+I/O denotes quantum I/O, and QPC denotes quantum process calculi.

[36, 24, 73, 17] extend classical process calculi like CCS [39], CSP [29] or the π calculus [40]
with quantum computing primitives and the ability of sending and receiving qubits via qubit
channels. However, it is difficult to isolate the semantics of communication itself from the
inherent complexity of concurrency. We discuss this in more detail in section 1.2.

This work aims to study the relatively unexplored ‘QC + I/O’ space in fig. 1.1: instead of
studying quantum concurrency in its full complexity, we study the programming language
primitives for quantum communication in isolation, as simple I/O operations extending the
circuit model. Concretely, this means having ‘gates’ like

which receives a qubit from an unknown environment, and

which sends a qubit to an unknown environment. Note that by environment, we mean an
unknown quantum system that interacts with our quantum computer via a fixed communication
channel which can transmit qubits. These ‘gates’ could combine into circuits like

1. Introduction 3

which receives a qubit from the environment, prepares another qubit, applies a unitary on both,
sends the second qubit to the environment and measures the first. In a standard programming
language, this would be written as

q_1: qbit = in()
q_2: qbit = new|0〉()
(q_1 , q_2) = applyU (q_1 , q_2)
out(q_2)
measurement_outcome : bit = measure(q_1)

Naturally, for any reasonable programming model, we also want to be able to send or receive
qubits based on a measurement outcome. For instance, we could send q_2 to the environment only
when the measurement outcome is 1. It is rather awkward to express this notion of classically
controlled quantum I/O in quantum circuit diagrams. This is because the hypothetical controlled
out box will have varying numbers of outputs according to the control bit: if the control bit is 1,
then the qubit is sent, and the out box should have no output qubit, whereas if the control bit
is 0, then the qubit is not sent, and the out box should act like the identity wire. In contrast,
the same notion is very easy to express in an imperative programming language:

q_1: qbit = in()
q_2: qbit = new|0〉()
(q_1 , q_2) = applyU (q_1 , q_2)
measurement_outcome : bool = measure(q_1)
if (measurement_outcome = 1):

out(q_2)
else: # do nothing

In fact, classically controlled quantum I/O seems so natural as a programming primitive that it
is worth studying more rigorously.

In this work, we choose to study the classically controlled quantum communication primitives
presented above as operations in an algebraic theory. Algebraic theories are no more than a
‘signature’ of operations and equations between terms formed by these operations. Originally
developed as an abstract notion of algebra, they were first repurposed and generalised by Plotkin
and Power [56] to give semantics to notions of computational effects treated as the combined
effect of individual operations. Their respective program equivalences can then be axiomatised
as equations over the terms formed by those operations. Instances of so-called ‘algebraic’ theories
of effects include non-determinism (with a binary choice operation), interactive I/O [31] (with
an input and an output operation), and cooperative threading [1]. Intuitively, one can think of
an algebraic theory as the interface of the computational effect it models and its equations as
the assumptions we make about that interface. This naturally leads us to the notion of a model
of an algebraic theory, which corresponds to the ‘implementation’ of such an interface as an
object in a category.

4 1.1. Contributions

Studying effects in algebraic theories has numerous advantages. Firstly, it gives us a math-
ematically principled way of studying the semantics of computational effects. In fact, doing
so with algebraic theories directly gives us a well-behaved mathematical object to study and
potentially ‘implement’ with different models, which could give different insights. Moreover,
algebraic effects are modular and compositional: we could, for instance, combine notions of
computational effects simply by combining their respective algebraic theories. Finally, there are
also practical advantages: giving semantics of effects using algebraic theories enables equational
reasoning on program equivalence either by hand or by a compiler.

Recently, Staton [67] developed a framework for algebraic theories with linear parameters and
gave the first complete algebraic theory of qubit quantum computing (QUANTUM) (informally
corresponding to the QC circle in fig. 1.1). The signature includes an operation for state
preparation new(q.c), an operation for applying unitaries applyU(~p, ~q.c), and an operation for
computational basis measurement measure(q, c0, c1), where p, q denote qubits and c, c0, c1 denote
continutations. The semantics of these operations are then encapsulated into equations such as

applyU(a, a.discard(a, x)) = discard(a, x)

where discard(a, x) = measure(a, x, x). This intuitively says that discarding a qubit after applying
a unitary on it is equivalent to simply discarding2.

In this dissertation, we base ourselves on Staton’s framework for parameterised algebraic theories.
The goal is to formulate a semantics for quantum I/O by combining Staton’s theory of quantum
computing and a theory for I/O with an operation in(q.c) for receiving qubits and an operation
out(q, c) for sending qubits and studying the resulting algebraic theory. Note that such a
combination does indeed give a notion of classical control for quantum I/O operations because
we can write programs like measure(p, out(q.c), c′), where we decide whether to send a qubit
based on the result of a measurement.

1.1 Contributions

The contributions of this thesis are twofold.

Firstly, we prove the existence of the sum and the tensor for parameterised algebraic theories
(theorem 3.3.11, theorem 3.3.15), the standard ways of combining algebraic theories developed
by Hyland, Plotkin and Power [31]. This provides evidence that Staton’s PAT framework
is well-formed and well-behaved and, therefore, provides a solid foundation for working with
parameterised algebraic theories.

In more detail, we start by explicitly characterising the relations between Staton’s syntactic
notion of PAT [69, 67] and the corresponding semantic object of enriched Lawvere theories. Given

2This is a simplified version of axiom (C) (fig. 4.1)

1. Introduction 5

a PAT P , we show that its syntactic category LP is a FinProd doctrine, [Ctx0,Set] enriched
Lawvere theory (theorem 3.2.21), and that the models of P and LP coincide (corollary 3.2.22).
Then, we generalise the enrichment structure of the Lawvere theories to a symmetric premonoidal
structure and relate it to the syntactic sequencing of terms in the PATs (theorem 3.3.8). We
then leverage this construction to show the existence of sums and tensors for the enriched
Lawvere theories generated by PATs by explicitly constructing them in terms of those syntactic
PATs (theorem 3.3.11, theorem 3.3.15).

Secondly, in chapter 4 and chapter 5, we systematically study classically controlled quantum
I/O. We give the algebraic theory as a tensor I/O ⊗ QUANTUM, a sound operational model,
and a sound monadic denotational model, which we prove is adequate and fully abstract to the
operational model. To the best of our knowledge, this is the first such programming-language-
theoretic development for quantum communication.

In chapter 4 we present our novel notion of classically controlled quantum communication as a
tensor of linear parameterised algebraic theories I/O ⊗ QUANTUM (section 4.1.2) and argue for
its sensibility. We give a novel operational semantics based on an ad hoc notion of quantum
streams (definition 4.2.5). We then define a precise notion of program equivalence based on
the operational semantics and show it is compatible with quantum theory by showing that it
is indeed a model of I/O ⊗ QUANTUM (theorem 4.3.25). Giving such a non-trivial model not
only exemplifies the notion of quantum communication we had in mind but also shows that
the theory itself is not degenerate. Indeed, tensoring two theories together is known to have
unexpected effects. A well-known example is the Eckmann-Hilton result (proposition 4.2.1, [47]),
where, for example, two monoids tensored together collapse into a single commutative monoid
(as opposed to two distinct monoids). Giving a non-trivial operational model as such shows
that this sort of phenomenon does not happen in I/O ⊗ QUANTUM.

Finally, in chapter 5, we leverage the insights obtained from the proofs in the previous chapter
to give a novel and elegant monadic denotational semantics for our algebraic theory based
on the free I/O monad constructed on the category CP∞ of matrix algebras and CP maps
completed with infinite biproducts following [52]. We then show that this denotational semantics
is adequate (theorem 5.3.4) and fully abstract (theorem 5.3.6) for our operational semantics,
meaning that they correspond to exactly the same computational model. As a corollary, the
denotational semantics is also a model of our algebraic theory (theorem 5.4.1, corollary 5.4.2).

1.2 Related Work

Our work is related to several lines of work in both classical and quantum programming
languages.

6 1.2. Related Work

Algebraic theories of effects The use of universal algebra to model computational effects
has been pioneered by Moggi [41] for the use of monads, and Plotkin and Power [56] for the
use of algebraic theories. Hyland, Plotkin and Power [31] further studied the different standard
combinations of algebraic theories and their respective computational interpretations. In this
work, we transfer their insights to Staton’s framework for parameterised algebraic theories [67,
69] and show the existence of sums and tensors of presented theories.

Also, both quantum computing [67] and I/O [31] have individually been studied using the power
of algebraic theories. In fact, the novelty of our work lies in their combination. As previously
mentioned, quantum computing has mainly been studied by Staton [67], whose work we base our
dissertation on. On the other hand, I/O was studied mostly for classical computing, appearing
in the context of interactive I/O [31] as well as message passing in distributed computing,
for example, as a primitive of the π calculus [66, 69]. When treated as interactive I/O, e.g.
when used as part of the resumptions monad [31], the input and output operators are usually
combined with other algebraic theories in a sum, meaning that they are set not to commute
with the other operations. When treated as communication, I/O operations are often made to
commute with independent local operations (e.g. name creation), like in the case of Stark’s free
model for the π calculus [66]. In a similar vein to this latter work, in our theory, we make I/O
operations commute with quantum operations, and we will further argue in section 4.1.2 that
such commutation is necessary to obtain a notion of communication that is consistent with the
peculiarities of quantum theory.

Categorical Semantics and Quantum Programming Giving categorical semantics for
quantum computing is not a new idea. Selinger, in the seminal work about the Quantum
Programming Language (QPL) [63], already gave a categorical semantics based on the density
operator formalism. This was subsequently generalised to operator algebras (e.g. C* algebras)
[19] and taken as the standard approach for giving denotational semantics for quantum
programming languages. A different line of work is that of Categorical Quantum Mechanics
(CQM) [3], which leverages the graphical tools derived from dagger compact closed categories
to reason about general quantum theory. Much of the mathematical tools used in this thesis
were, in fact, developed in this programme.

Axiomatisations of quantum program equivalence We base our work on Staton’s fully
complete axiomatisation of qubit quantum computing as an algebraic theory. Recently, Carette
et al. complemented Staton’s work by giving a sound and complete equational theory for unitary
quantum circuits taken from various gate sets [14]. They do so by extending a model of classical
reversible computing, Π, with two maps and three equations suffices to achieve such results. An
alternative line of work bases itself on the insights of CQM to produce graphical calculi like the
ZX calculus [20, 21] and related calculi (e.g. ZH calculus [7], ZW calculus [27] etc.). However,
such calculi are distinguished from the aforementioned axiomatisations, for they model general
quantum theory, and quantum circuits are only a subset thereof.

1. Introduction 7

Notions of (classically controlled) Quantum I/O in Programming In the context of
programming languages, quantum communication has mostly been studied as qubit message
passing in quantum process calculi. Quantum process calculi generalise classical process calculi
to model a notion of message-passing concurrent quantum programming. Noteable lines of work
include CQP [24], QPAlg [36], qCCS [73] and the most recent lqCCS [17]. These works usually
give an operational account of their calculi using a labelled transition system (LTS), where
labels are effects such as sending or receiving a qubit. In particular, message-passing is done
with a synchronisation primitive where P ||Q → P ′||Q′ if P c?v→ P ′ and Q

c!v→ Q′ (P, P ′, Q,Q′

are processes, || means parallel composition, c is a channel, v is a qubit name and !, ? mean
send and receive respectively). Then, they give a notion of program equivalence based on
bisimilarity. Informally, if the LTS is defined on configurations of the form of state-program
pairs, a bisimilarity is the largest relation on configurations defined according to the following
informal pattern: two configurations are bisimilar if whenever one reduces, the other reduces
accordingly, and the resulting configurations are equivalent. However, as pointed out by the
authors [17], giving a notion of program equivalence for quantum process calculi is difficult
because of the subtle interactions of concurrency, synchronisation and local non-determinism
with quantum effects. Indeed, they demonstrate that each of the notions of bisimilarity proposed
by the various lines of work differ in slight and subtle ways. In a later work, the same authors go
on to develop a categorical, coalgebraic account of ‘effect’ LTSs, generalising probabilistic LTSs
with effect algebras to better reason about the subtleties of what they call quantum bisimulation
[16].

Our work differs from this line of work in three ways. Firstly, we focus on (possibly classically
controlled) communication instead of concurrency and, by doing so, restrict our problem to a
much more tractable setting. In a way, our work could be seen as studying the ‘local’ sublanguage
of quantum process calculi, with only quantum computing primitives and communication. The
second difference lies between bisimilarities and the (operational) notion of program equivalence
we defined. Bisimilarities reason about every state in the transition sequences of the programs
we want to equate, because the programs in question are not assumed to terminate – this is
the case in general quantum process calculi. In contrast, our quantum equivalence is based on
operational semantics where every program terminates, and therefore, we need only consider the
final state of the programs. With that said, rather surprisingly, the subtleties we encountered
when defining a program equivalence compatible with quantum theory are similar to some of
those encountered by various authors in defining bisimilarity relations for quantum process
calculi. Finally, our approach is more denotational, following the line of work of algebraic effects.
Bisimilarities fundamentally are operational notions because because they reason about the
transitions of the program state. In contrast, our work additionally has a categorical denotational
semantics that is adequate and fully abstract with respect to the operational semantics, as well
as a sound equational theory I/O ⊗ QUANTUM axiomatising its equality.

8 1.2. Related Work

Higher-order quantum computing The notion of quantum communication presented in
our work very much seems to relate to the recent trends of higher-order quantum computing,
where instead of reasoning about simple quantum channels, we reason, for example, about maps
from quantum channels to quantum channels. A particularly interesting graphical notation
introduced by [18] is the Comb notation:

A

A′
B

B′

which corresponds to a morphism C(I, A∗ ⊗ A′ ⊗B∗ ⊗B′) according to compact closure.

Further along this line of research, Kissinger and Uijlen [34] introduce the Caus construction of
higher order ‘causal’ processes on a special class of compact closed categories called ‘precausal’,
including CP as introduced in section 2.3.3. This, in particular, allows for reasoning about
higher-order quantum channels with causality and signalling constraints. Intuitively, our
denotational semantics of quantum communication is akin to a quantum program with open
input and output wires with causality constraints: the input and output wires should be used
in the order specified by the I/O trace σ ∈ {in, out}∗. As future work, it would be interesting to
understand whether this relates to higher-order causal processes in the Caus construction.

Quantum Controlled Communication Relatedly to the questions of higher order processes
and causality, quantum information theorists have developed higher order quantum channels
which allow for quantum (coherent) control [2, 35]. This includes channels with indefinite causal
order (where the order of applying channels can be controlled by a qubit in superposition) and,
more interestingly, channel multiplexing (with a qubit controlling which channel to send other
qubits to). In this work, for simplicity, we have only considered classically controlled quantum
I/O without a notion of deferred measurement (briefly discussed in section 4.1.2). However, as
future work, it would be interesting to explore how to potentially formulate such a notion of
deferred measurement if we allow for this kind of coherently controlled communication.

Monads in quantum computing Finally, adapting classical monads to the quantum case
is not a new idea. For instance, Sati and Schreiber [62] show that classical monads such as
the reader monad (X 7→ (W → X)), the writer monad (X 7→ W × X) and the state monad
(X 7→ W → (W × X)) can be adapted to the quantum setting. They further show that, for
instance, the quantum reader monad can be seen as equivalent to Coecke’s classical structures
[23] and that the quantum state monad can be used to reason about a certain class of quantum
channels. However, they do not consider the free I/O monad that we are considering for this
work.

1. Introduction 9

1.3 Outline

Chapter 2 introduces the relevant background in category theory, algebraic effects, quantum
computing and string diagrams to understand this dissertation. Chapter 3 presents the framework
for parameterised algebraic theories à la Staton [67], explicitly constructs the Lawvere theory
generated by a PAT, and develops the notion of sum and tensor. Chapter 4 presents the algebraic
theory of interest, I/O ⊗ QUANTUM, and gives it a non-trivial, operational-semantics-based
model using a program equivalence compatible with quantum behaviour. Chapter 5 leverages
the insights from the proofs of the previous chapter to give a monadic denotational semantics,
which is a model of I/O ⊗ QUANTUM and is adequate and fully abstract with respect to the
operational semantics.

2
Background

This chapter provides an informal overview of the required background in category theory
(section 2.1), algebraic effects (section 2.2), and quantum computing (section 2.3).

2.1 Basic Category Theory

Category theory is the go-to mathematical tool for studying (and building) abstractions. We
briefly present several basic definitions and facts in category theory. For further reading, the
reader is referred to [38, 61, 54].

2.1.1 Categories

2.1.1.1 Basic facts about categories

We start by fixing the notation while presenting basic definitions.
Definition 2.1.1 (Category). We say that C is a category if it has

• A collection of objects Ob C,

• For each X,Y ∈ Ob C, a collection of morphisms C(X,Y),

• For every X ∈ Ob C there is a morphism idX : C(X,X), and for every X,Y, Z ∈ Ob C
and every morphism f ∈ C(X,Y) and g ∈ C(Y, Z), there is a g ◦ f ∈ C(X,Z),

such that id ◦ f = f ◦ id = f and (h ◦ g) ◦ f = h ◦ (g ◦ f).

We say that C is locally small if all the morphism collections are sets, and C is small if the
object collection is also a set.

11

12 2.1. Basic Category Theory

Definition 2.1.2 (Functor). A functor F : C → D is an object map which associates every
X ∈ C with an object F (X) ∈ D, and a morphism map which associates every f : X → Y to a
morphism F (f) : F (X) → F (Y), preserving identity and composition.
Definition 2.1.3 (Natural Transformation). A natural transformation α : F → G between two
functors F,G : C → D is a family of morphisms αX for X ∈ C such that the following commutes

F (X) F (Y)

G(X) G(Y)

F (f)

αX αY

G(f)

for all X,Y ∈ C and f : X → Y .

2.1.1.2 Presheaves and free cocompletions

It is often useful to take a category C and ‘freely add’ constructions like all (small) coproducts
or all (small) colimits. For instance, a free cocompletion of a category C, is a category C ′ with
all small colimits which embeds C along E : C → C ′, such that for any D with all small colimits
and any functor F : C → D, there is a unique small colimit preserving functor G : C ′ → D such
that G ◦ E = F . The dual notion of completions (freely adding small limits) can be defined
similarly. Similar notions can for instance be defined for finite coproducts, and dually, for finite
products.

For explicitly constructing free cocompletions, we need some basic facts about presheaf categories,
which we present in the style of [51]. For any locally small C,D, we write [C,D] to denote the
category of functors from C to D with natural transformations as morphisms.
Definition 2.1.4 (Functor underlying the Yoneda Embedding). Let C be locally small. There
is a functor よ : C → [Cop,Set] defined by X 7→ C(−, X).

Note that we call [Cop,Set] the category of presheaves on C.
Proposition 2.1.5 (Yoneda’s Lemma). For any F ∈ [Cop,Set], there is a canonical isomorphism

[Cop,Set](よ(X), F) ' F (X)

Corollary 2.1.6 (Yoneda’s embedding). よ is a full and faithful functor (injective and surjective
on morphism sets), hence an embedding.
Definition 2.1.7 (Representable presheaf/functor). A presheaf F : Cop → Set is representable
if it is naturally isomorphic to C(−, X) for some X ∈ C.

The Yoneda embedding is useful because it defines (along with its codomain [Cop,Set]) the free
(small-)cocompletion of C (cocompletion meaning completing with all colimits) [48]. Using this
fact, we can nicely define the free finite coproduct cocompletion as follows:

2. Background 13

Example 2.1.8 (Free finite coproduct cocompletion). Let C be a small category. The free
finite coproduct cocompletion of C is the full subcategory [Cop,Set]+ of [Cop,Set] of the finite
coproducts of representables. Then, clearly the Yoneda embedding factors through it: よ : Cop ↪→
[Cop,Set]+ ↪→ [Cop,Set].

By duality, we can analogously define the free product completion:
Example 2.1.9 (Free finite product completion). Let C be a small category. The free finite
product completion of C is exactly [C,Set]op+ .

2.1.2 Monoidal categories

Now we move on to monoidal categories, which are categories with an additional notion of
‘monoidal’ product ⊗, which some authors (e.g. [22]) refer to as ‘parallel composition’.

2.1.2.1 Basics facts about monoidal categories

Definition 2.1.10 (Monoidal category). A monoidal category (C,⊗, I, α, λ, ρ) (or just C or
(C,⊗, I)) is a category C equipped with:

• A functor ⊗ : C × C → C (sometimes referred to as a ‘bifunctor’ as it’s a functor with two
inputs), called the monoidal product

• A distinguished object I ∈ C called the monoidal unit

• And natural isomorphisms

– αA,B,C : (A⊗B) ⊗ C → A⊗ (B ⊗ C), the associator, natural in A,B,C;

– λA : I ⊗ A → A the left unitor, natural in A

– and ρA : A⊗ I → A the right unitor, natural in A

such that the following diagrams (Coherence relations) commute for any A,B,C,D ∈ C:

• The Triangle equation:

(A⊗ I) ⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA⊗B
A⊗λB

• The Pentagon equation

((A⊗B) ⊗ C) ⊗D (A⊗B) ⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C)) ⊗D A⊗ ((B ⊗ C) ⊗D)

αA⊗B,C,D

αA,B,C⊗D

αA,B,C⊗D

αA,B⊗C,D

A⊗αB,C,D

14 2.1. Basic Category Theory

We say that C is strict monoidal if all the coherence isomorphisms are identity.
Definition 2.1.11 (Symmetric monoidal category). A monoidal category (C,⊗, I) is symmetric
if there is a natural isomorphism σX,Y : X ⊗ Y ∼= Y ⊗X such that σY,X ◦ σX,Y = idX⊗Y , and
the following additional diagram is commutative:

(X ⊗ Y) ⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z) ⊗X

(Y ⊗X) ⊗ Z Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗X)

α

σ⊗id

σ

α

α id⊗σ

Definition 2.1.12 (Monoidal closure (e.g. [43])). A closed monoidal category is a monoidal
category (C,⊗, I) such that for every Y ∈ C, the functor (−) ⊗ Y : C → C has a left adjoint
[Y,−] : C → C such that for all X,Y, Z ∈ C there is a natural isomorphism C(X ⊗ Y, Z) '
C(X, [Y, Z]).
Proposition 2.1.13 (Mac Lane’s coherence theorem (e.g. [38])). Every monoidal category is
monoidally equivalent to a strict monoidal category. In other words, the associators and unitors
‘do not matter’ because every ‘formal’ diagram made up of associators and unitors commutes.
Definition 2.1.14 (Monoidal functor (e.g. [49])). A (lax) monoidal functor F : (C,⊗, I) →
(D,⊗, I) is a functor F : C → D together with a coherent map ε : ID → F (IC) and a natural
transformation µX,Y : FX⊗DFY → F (X⊗CY) which commute with the associators and unitors
of C and D. It is strong (resp. strict) if these morphisms are isomorphisms (resp. identity).
Definition 2.1.15 (Symmetric monoidal functor). A symmetric monoidal functor is just a
monoidal functor such that the natural transformation µ commutes with the symmetry.

Now, we define some additional useful mathematical tools based on monoidal categories.

2.1.2.2 Actions of monoidal categories

As presented by Capucci and Gavranović [13], monoid actions are a way of providing an
‘implementation’ of the laws of a monoid as ‘operations’ on another object.
Definition 2.1.16 (Action). Let (M, ·, 1) be a monoid. Then, an action of M on a set X is an
operation • : M ×X → X such that

• 1 •X = X

• (a · b) •X = a • (b •X)
Example 2.1.17 (Scalar multiplication (e.g. [13])). The scalar multiplication K × V → V of a
vector space V over the field of scalars K is an action of K on V .

As we can see, not only do actions provide an implementation of the monoid M , they also provide
additional structure to the set X and allow us to e.g. relate collinear vectors by their scalar
factors. In category theory, we can define a similar notion of ‘action’ for monoidal categories.

2. Background 15

Definition 2.1.18 (Actions of monoidal categories). A (left)-action of a monoidal category
(C,⊗, I) on a category D is a functor • : C × D → D along with natural isomorphisms
ηX : X → I •X and µA,B,X : A • (B •X) → (A⊗B) •X satisfying some coherence equations
shown in definition 3.1.1 of [13].

This definition will allow us to define a notion of parameterised computation: we will define
an action • : Ctx0 × C → C, where Ctx0 is the monoidal category exhibiting the structure of
parameterised computations and C is the ‘implementation’ category instantiating that structure.
Then, p • X may be interpreted as ‘the implementation of computations depending on p

parameters in X’, or simply ‘a computation in X depending on p parameters’.

2.1.2.3 Making the free cocompletion compatible with the monoidal structure

We’ve seen in section 2.1.1.2 how to construct free cocompletions; we now want to make it
compatible with monoidal categories. For simplicity of definitions, we only consider cocompleting
symmetric monoidal categories, but the construction works for general monoidal categories.

Let (C,⊗, I) be a symmetric monoidal category. Then, it suffices to define a symmetric monoidal
structure on its free cocompletion [Cop,Set] compatible with ⊗ (i.e. such that よ preserves ⊗).
This can be achieved using the Day convolution structure:
Definition 2.1.19 (Day convolution). Let F,G ∈ [Cop,Set]. Their Day convolution is:

F ⊗Day G : X 7→
∫ A,B∈C

F (A) ×G(B) × C(X,A⊗B)

While this definition may seem obscure1, it is fully (and universally) determined by the very
nice properties listed below [33]:
Proposition 2.1.20 (Monoidal closed structure (e.g. [44])). Let (C,⊗, I) be a symmetric
monoidal category. Then ([Cop,Set],⊗Day,よ(I)) is a symmetric monoidal closed category.
Proposition 2.1.21 (Yoneda embedding is strong monoidal (e.g. [45])). The Yoneda embedding
よ : C → [Cop,Set] is a strong monoidal functor (i.e. preserves the monoidal structure up to
isomorphism) with respect to the ⊗Day monoidal structure. If C is symmetric monoidal, then よ
is additionally a symmetric monoidal functor.
Proposition 2.1.22 (Day convolution preserves colimits (e.g. [44])). Day convolution ⊗Day

preserves colimits separately on each of its arguments.

Proof. Follows from the symmetry and closure of ⊗Day.

As a corollary, it means that the free coproduct cocompletion and the free product completion
can also be made compatible with C’s monoidal structure with the Day convolution.

1Not unlike most of category theory

16 2.1. Basic Category Theory

2.1.3 Premonoidal categories

In a monoidal category C, the monoidal product ⊗ is a bifunctor, meaning that it is a functor
separately on both arguments, which additionally satisfies that the following diagram commutes.

X ⊗ A X ⊗B

Y ⊗ A Y ⊗B

X⊗g

f⊗A f⊗B

Y⊗g

for any f : X → Y and g : A → B, with X,Y,A,B ∈ C.

This intuitively means that f and g can be run ‘in parallel’, i.e. their order does not matter.
However, if we interpret f and g as impure computations acting on different resources, then
the order will matter. In fact, the programs f ; g and g; f are usually not equivalent. This
motivates the notion of premonoidal category, introduced by Power and others in e.g. [59, 6],
where bifunctoriality of ⊗ (i.e. the equation above) does not hold in general.
Definition 2.1.23 (Binoidal category). A binoidal category is a category C with

• X ⊗ Y ∈ C for each X,Y ∈ C

• For each X a functor X o − such that X o Y = X ⊗ Y

• For each X a functor − nX such that Y nX = Y ⊗X.

In a binoidal category C, we can define central morphisms, which we think intuitively of as a
special subset of computations which commute with every other computation.
Definition 2.1.24 (Central morphisms). A morphism f : X → Y is central if for any
f ′ : X ′ → Y ′ the following two diagrams commute:

X ⊗X ′ X ⊗ Y ′

Y ⊗X ′ Y ⊗ Y ′

Xof ′

fnX′ fnY ′

Y of ′

and
X ′ ⊗X X ′ ⊗ Y

Y ′ ⊗X Y ′ ⊗ Y

X′of

f ′nX f ′nY

Y ′of

We then denote these composites as f ⊗ f ′ and f ′ ⊗ f respectively.
Definition 2.1.25 (Premonoidal category). A premonoidal category C is a binoidal category with
an object I ∈ C and central isomorphisms αA,B,C : (A⊗B) ⊗C

∼=→ A⊗ (B⊗C), λA : I⊗A
∼=→ A

and ρA : A⊗ I
∼=→ A such that all the possible naturality squares for α, λ and ρ commute (i.e.

they are natural in each index separately), and satisfying the pentagon and triangle laws.

2. Background 17

Definition 2.1.26 (Symmetric premonoidal category). A symmetric premonoidal category is a
premonoidal category (C,⊗, I) such that there is a central isomorphism σX,Y : X ⊗ Y

∼=→ Y ⊗X

natural separately in X and Y , satisfying the same axioms of as a symmetric monoidal category.

An example will be the syntactic category constructed in chapter 3, which we will come to later.

Finally, we define a premonoidal functor similarly to monoidal functors, as in [58]:
Definition 2.1.27 (Premonoidal functor ([58] Definition 20)). A premonoidal functor F : C → D
is a functor that sends central maps to central maps, together with central natural transformations
µX,Y : FX⊗DFY → F (X⊗C Y) and ε : ID → F (IC) commuting with the associator and unitors.

The functor is strong (resp. strict) if they are isomorphisms (resp. identity morphisms).

One can similarly generalise the definition for symmetric monoidal functors, but we will not
detail it here.

2.2 Universal Algebra and the algebraic theory of effects

For programming language theorists, an important subfield of category theory is universal
algebra. Algebra refers to the study of sets which have extra structure denoted by operations
and equations. Universal algebra abstracts away from particular instances (models) of algebras
and studies algebraic theories, which are generic algebraic structures defined by those operations
and equations. In the language of computer science, algebraic theories specify the abstract
interface, whereas models (or ‘algebras’) provide an implementation to that interface satisfying
all the specified assumptions.

This section aims to provide an informal (but standard) overview of the basics of universal algebra
by introducing a notion of simple (non-parameterised) algebraic theory and its corresponding
semantic objects like Lawvere theories and Monads. Then, we show how algebraic theories give
rise to notions of computational effects. This presentation follows various tutorial papers ([8,
60, 32]) and textbooks ([61, 38]), which we invite keen readers to browse through.

2.2.1 Syntactic notion of algebraic theories

Consider the definition of monoids. A monoid is defined as a set M with operation · : M2 → M

and ε : 1 → M (equivalently ε ∈ M) such that

(x · y) · z = (x · y) · z

x · ε = x

ε · x = x

18 2.2. Universal Algebra and the algebraic theory of effects

for any x, y, z ∈ M . Similarly, we could also define a ‘monoid’ in a cartesian category2 C other
than Set, i.e. an object M ∈ C along with morphisms M2 → M and 1 → M satisfying the
equations.

Universal algebra allows us to abstract away from concrete instances (models) of monoids and
consider their shared algebraic structure with the theory of monoids. For this purpose, we need
to define a ‘language’ which can express the definitions of algebraic structures.
Definition 2.2.1 (Signature of simple algebraic theories). A signature Σ is a set of operations
with arities. We write op : n to express that op is n-ary.

Now, we proceed to define the terms. A context is a list of distinct variables Γ = x1, x2, x3...,
and we write Γ ` t to mean that t is a valid term in the context Γ. The relation · ` · is the
least one generated by the following rules

(var)
Γ, x,Γ′ ` x

(Γ ` ti)i=1...n op : n
(op)

Γ ` op((xi)i=1...n)

Definition 2.2.2 (Axioms of simple algebraic theories). An axiom, written as Γ ` t = t′,
indicates that t and t′ are equal under context Γ. We take the equality relation to be the least
relation closed under reflexivity, transitivity, congruence and substitution.
Definition 2.2.3 (Simple algebraic theory). A simple algebraic theory is a signature Σ along
with a set of axioms E.

For example, the theory of monoids, Mon, will be defined by the signature µ : 2, η : 0 and axioms

x, y, z ` µ(µ(x, y), z) = µ(x, µ(y, z))
x ` µ(x, η) = x

x ` µ(η, x) = x

Definition 2.2.4 (Models of algebraic theories). A model is defined by an carrier object X in a
cartesian category C such that

• Every operation op : n is interpreted as a morphism JopK : Xn → X

• Every term Γ ` t is interpreted as follows:

Jx1...xk ` xiK = πi : Xk → X

JΓ ` op(t1...tm)K = JopK ◦ 〈JΓ ` tiK〉i=1...m : X |Γ| → X

• And every equation holds, i.e. Γ ` t = t′ means JtK = Jt′K. In practice, it suffices to show
that all the axioms hold.

For example, models of Mon in Set correspond to the usual notion of monoid.
2i.e. has terminal objects and products.

2. Background 19

2.2.2 Semantic notions of algebraic theories

While the syntactic notion of algebraic theories is convenient to work with, it has an important
flaw: different signatures along with different axiomatisations could turn out to correspond to
the same theory. Thus, we call a syntactic theory a presentation and define presentation-agnostic
semantic notions of theory. A semantic theory is then said to be ‘presented’ if there exists a
presentation which generates it.

2.2.2.1 Lawvere theory

The first construction is the Lawvere theory [37]. Informally, a Lawvere theory L is a category
where all objects are a finite product of a special object X ∈ L. Morphisms (which do not stem
from the definition of products) then correspond to operations: for example, an n-ary operation
is a morphism Xn → X. Morphisms are equated according to the algebraic structure we wish
to model.

Following the tradition of functorial semantics, the required predefined structure (finite products
of a special object) is given by a category with only those structures, Fop, along with a structure-
preserving functor K : Fop → L.

Let F be the skeleton category of FinSet: its objects are n ∈ N and F(n,m) is the set of all
possible functions from [n] to [m]. Further, let the coproducts in F be strict. We claim that Fop

encodes exactly the required structure: the functions [n] → [m] are in bijective correspondence
with the possible functions Xm → Xn using only ‘structural’ operations like projection and
diagonal morphisms stemming from the products.
Definition 2.2.5 (Lawvere theory). A Lawvere theory is a category L along with an identity-
on-objects and strictly finite product preserving functor K : Fop → L.

Then, in L, the object 0 is the terminal object and any object n corresponds to the n-ary
product of 1. By convention, we can then write 1 = X1 = X, n = Xn and 0 = X0 = I.

A presentation generates a Lawvere theory by taking the terms modulo the equations as
a syntactic category. On the other hand, a Lawvere theory is more general than a finite
presentation: there could be algebraic theories which can’t be axiomatised with a finite number
of operations and equations.
Remark 2.2.6 (Combining algebraic theories). A big advantage of the Lawvere theory con-
struction is that it provides natural semantic notions of the syntactic combination of algebraic
theories [31]: the sum and the tensor. On the one hand, at the level of presentations, the sum
L + L′ (which forms a coproduct) corresponds to taking the operations and axioms from both
theories and not adding any additional equation. On the other hand, the tensor L ⊗ L′ (which
is a symmetric monoidal structure) corresponds to the same thing as the sum, except we add
equations such that every operation from L commutes with every operation from L′.

20 2.2. Universal Algebra and the algebraic theory of effects

Finally, a model can be defined naturally as a category along with another structure-preserving
functor:
Definition 2.2.7 (Model of Lawvere theories). Let (L, K) be a Lawvere theory. A model to the
theory is given by a product-preserving functor M : L → C.

Here, M simply points to a particular object X in C, which acts as the carrier object.

2.2.2.2 Monad

Another semantic notion of algebraic theory is the notion of monads. Monads give a semantic
notion of algebraic theories because each syntactic algebraic theory uniquely induces a monad
in Set via its free model.
Definition 2.2.8 (Monad). A monad on category C is an endofunctor T : C → C along with
natural transformations µ : TT → T and η : Id → T such that the following diagrams commute:

T TT T

T

ηT

id µ

Tη

id

TTT TT

TT T

Tµ

µT µ

µ

In computer science, it is often useful to consider the alternative equivalent definition [41] of
monads as Kleisli triples:
Definition 2.2.9 (Monad as a Kleisli triple). A monad is a triple (T, η, [·]†) where T is an object
map from C to C, ηX : X → TX is a morphism for every X ∈ C, and, for every f : X → T (Y)
in C, a morphism TX → TY such that:

• (ηX)† = idTX

• for every f : X → TY , f † ◦ ηX = f

• for every f : X → TY and g : W → TX, f † ◦ g† = (f † ◦ g)†.
Remark 2.2.10 (Equivalence of the two definitions). T is a functor with Tf = (ηB ◦ f)T for
f : A → B. We can then further derive that η is a natural transformation Id → T . Then, we
can define the multiplication simply as µA : TTA → TA , [idTA]†.

Conversely, given f : A → TB, we can obtain [·]† from µ : TT → T by defining f † , TA
Tf→

TTB
µB→ TB.

2. Background 21

Let P = (Σ, E) be a presentation and let A be an arbitrary set. We define the free model FP (A).

We first define free terms:

t , return a (a ∈ A)

| op(t1...tn) (op : n ∈ Σ)

We denote the set of all such free terms TreeΣ(A).

Furthermore, let =E be the equality our axioms induce as defined in definition 2.2.2. Then
we can define an equivalence relation ≈ over TreeΣ(A) simply by taking every instance of the
relation Γ ` t =E t

′ and including every possible way of closing t and t′ by substituting each
x ∈ Γ with return ax (for ax ∈ A).
Definition 2.2.11 (Free model). For P a simple presentation, its free model over set A is
defined by FP (A) , TreeΣ(A)/ ≈.
Example 2.2.12. The free model of Mon over a set A is exactly the free monoid over A, i.e.
the set of finite lists with elements from A, which forms a monoid with list concatenation and
the empty list.
Proposition 2.2.13 (Free model monad (e.g. [8])). The free model FP forms a monad over
Set.

Proof. The object map is given by FP , η is given by ηA(a) , [return a], and for any φ : A → TB,
[φ]† : TA → TB is given by induction as follows:

• φ†([return a]) , φ(a)

• φ†([op(t1...tn)]) , op(φ†([t1])...φ†([tn])).

Example 2.2.14 (Free monoid monad). The free model of Mon induces exactly the free
monoid monad, i.e. the List monad for Haskell users. The unit ηA applied to a just returns
singleton list [a], and for any φ : A → TB the † operation gives φ† = flatmap φ, where
flatmap φ a_list = flatten(map φ a_list) in functional programming notation.

Finally, we could further define the notion of algebras of monads, which correspond to a particular
object A in the category C on which the monad T is defined, along with a morphism TA → A

which intuitively gives an ‘implementation’ to the structure defined by the monad. When a
monad on Set is generated by an algebraic theory, its algebras turn out to correspond to the
models of that algebraic theory in Set. We leave details to the reader.

22 2.2. Universal Algebra and the algebraic theory of effects

2.2.2.3 Correspondence

But are monads and Lawvere theories related? It turns out that (simple) Lawvere theories, as
we present them here, correspond exactly to a specific class of monads over Set called ‘finitary’,
which intuitively means that the underlying functor is fully determined by its definition on the
‘finitary’ elements of Set (i.e. the finite sets).

While we will not show the full proof, let us attempt to provide some intuition.

If T : C → C is a monad, it determines a special category called the Kleisli Category KlT , where
objects are the same as C and morphisms are defined as KlT (A,B) , C(A, TB). We now claim
that the Lawvere theory LP of a presentation P is exactly the opposite of the Kleisli category
of the corresponding monad of Set, restricted to finite sets, KlTFinSet

P
.

To see this, take our running example, Mon, and call its corresponding Lawvere theory L and
its corresponding monad T . Then, consider L(2, 1), the set of all distinct ‘operations’ from X2

to X. Because L is presented by Mon, this set is exactly the set of distinct operations of the
form x, y ` t modulo =, the equivalence relation generated by Mon’s axioms. Writing Mon’s
multiplication infix with · and its unit with ε we can see that the possible terms are exactly

{x, y ` ε;x, y ` x;x, y ` y;x, y ` x · x;x, y ` x · y;x, y ` y · y; ...}

which is exactly the set of distinct finite lists we can form out of 2 distinct elements. In general,
then, L(m, 1) is in bijective correspondence with all finite lists with elements from an m-element
set, and this generalises to L(m,n) easily as L(m,n) ∼= L(m, 1)n.

On the other hand, let’s write n to denote an n-element set for any n ∈ N. Then KlT (1,m) =
Set(1, T (m)) ∼= T (m) corresponds to the underlying set of the free monoid over m, i.e. exactly
the number of possible finite lists over a set of m elements, and this similarly generalises to
KlT (n,m) = Set(1, T (m)) ∼= T (m)n.

Thus
L(m,n) ∼= KlT (n,m)

which gives
L ' KlopTFinSet .

2.2.3 Algebraic Effects

Why, as computer scientists, do we care about these mathematical constructions? In short,
because they capture notions of computation.

Plotkin and Power, in their seminal paper in 2002 [56], show how notions of computation can be
presented in the form of algebraic theories, i.e. operations along with equations. For pedagogical

2. Background 23

reasons, we follows Bauer’s tutorial [8] take the opposite perspective and see how an algebraic
theory can be interpreted computationally.

Consider the term
x, y ` µ(x, y)

in Mon. Here, x, y are traditionally interpreted as elements of the monoid, and µ as the
monoid multiplication. Instead, we interpret x and y as computations and µ as a computational
operation. Recalling that a pair is the same thing as a function from booleans (X2 ∼= 2 → X),
we could equivalently write

x, y ` µ(λb. if b then x else y).

The meaning of µ now becomes generating a boolean, and then running the continuation x or y
accordingly. In other words, an algebraic theory corresponds to a notion of effectful computation
in continuation-passing style (or algebraic style), and models of such algebraic theories are their
implementations: the carrier object X becomes the set of computations, and n-ary operations,
interpreted as morphisms of the form Xn → X, are ways of forming a new computation from n

other computations.

In the case of Mon, the binary operation µ can be interpreted as a notion of non-determinism,
where each non-deterministic branch is run with the results collected together in a list. Here, µ
is an associative operation which corresponds to list concatenation, and the unit ε is interpreted
as the empty list, i.e. a way of marking that a particular branch does not give results.

On the other hand, Moggi [41] presented monads as a way of representing effects. To date, this
is the most widely adopted method, partly thanks to Haskell’s popularity. Let (T, η, [·]†) be
a monad on Set, its Kleisli category naturally represents gives a notion of computation. We
take T (A) to mean ‘computations returning a value of type A’, ηA(x) to mean the ‘do nothing’
computation returning the value x : A, and for any computations x : T (A) and φ : A → T (B),
we can sequence them by taking φ†(x) : T (B).

Working in the Kleisli category of a monad gives rise to direct style programming. For
instance, consider the List monad TList , List(A), generated by the monoid theory (e.g. §2.7
in [71], defined in example 2.2.14). It is interpreted as the same notion of non-deterministism
presented above. Using the correspondence between algebraic theories and monads presented in
section 2.2.2.3, we could interpret the monoid operations µ and η in the Kleisli category of TList,
with JµK : 1 → TList(2) and JηK : 1 → TList(0) (not to mix up with the monad’s multiplication
and unit). Here, JηK’s type forces it to give the empty list, while JµK has the type of a function
‘generating’ a boolean (instead of a function choosing between two continuations). This style of
programming is closer to what one would write in normal imperative programming, hence why
it is qualified as ‘direct’.

24 2.3. Quantum Computing and String Diagrams

Remark 2.2.15 (Parameterised theories). In this section, we only considered non-parameterised
algebraic theories, which model only a very limited number of effects. We usually use a
more generalised notion of algebraic theory that is parameterised, with operations of the form
op(p, λa. t) where p : P corresponds to the parameter, and a : A the generalised arity, where
A is no longer assumed to be finite. We can then write op : (P | A). For instance, we can
imagine a theory modelling states with an operation read : (L | V) and write : (L× V | 1) where
L is the collection of locations and V the type of values those locations can store. Later in this
dissertation, we also consider operations which can send and receive qubits (‘quantum’ bits):
in : (1 | qbit) and out : (qbit | 1).

2.3 Quantum Computing and String Diagrams

Quantum computing is notoriously tedious to describe using the traditional linear-algebraic
notations. In this work, we instead opt for string-diagrammatic tools developed in the Categorical
Quantum Mechanics (CQM) programme (e.g.[3, 28]).

This section starts with an overview of basic quantum information theory, followed by a
description of the required string diagrammatic tools based on monoidal categories. Then, we
use knowledge from both sides to describe the category CP, which we make use of extensively
in this work.

2.3.1 Quantum Computing

Quantum computing is a computational model which relies on quantum phenomena like
superposition and entanglement to perform computation. In this section, we give a brief
introduction to basic quantum computing and quantum information theory. We assume
knowledge of basic linear algebra and Hilbert spaces. For more detail, we invite the reader to
textbooks like [42, 72].

2.3.1.1 Basics

Bra-ket notation We note column vectors ψ ∈ Cn as |ψ〉 and their complex conjugates ψ† as
〈ψ|. Then, inner product between two vectors φ, ψ ∈ Cn can be noted as 〈φ|ψ〉, and the outer
product as |φ〉〈ψ|. Finally, their tensor product φ⊗ψ can be noted as |φ〉|ψ〉 or sometimes |φψ〉.

States The space of possible (pure) quantum states consists of the normalised vectors of some
Hilbert space H. The basic unit of computation is the qubit, which corresponds to the space C2.
We can then define |0〉 , (1, 0)T and |1〉 , (0, 1)T .

2. Background 25

Superposition The power of quantum computing comes from the fact that qubits are
normalised vectors: instead of only having two possible values, 0 and 1, like a normal bit, a
qubit can take any value in the unit ball. For example, it can take value α|0〉 + β|1〉 (where
|α|2 + |β|2 = 1). When this is the case, we say that the qubit is in superposition, intuitively
meaning that it is ‘simultaneously’ in both states.

Entanglement Qubit states can be combined together using the tensor product. For example,
|0〉 ⊗ |1〉 = |01〉 = (0, 1, 0, 0)T ∈ C4 = C2 ⊗ C2. However, not all states in C2 ⊗ C2 can be
separated into the tensor product of two individual states in C2. For example, consider the
state ψ = 1√

2(|00〉 + |11〉): the reader can check that it is not separable. When this is the case,
we say that the state entangled. Entanglement can be the vector of non-local effects. Where two
physically separated qubits are entangled, observing one determines the state of the other one.

Unitary Evolution A unitary is a matrix U such that U † = U−1. According to the
Schrödinger equation, closed quantum systems evolve according to a unitary operator. In
quantum computing, we usually talk about ‘applying’ a unitary on a quantum state, meaning
evolving it accordingly. We additionally use a set of unitary ‘gates’ as the basic building blocks

of the unitary. For example, Pauli X gate, defined as X =
(

0 1
1 0

)
, is similar to the quantum

equivalent of a not gate: X|0〉 = |1〉 and X|1〉 = |0〉.

No-go: no-cloning One can show that there is no unitary that allows one to clone arbitrary
quantum states, i.e. there is no U such that U |ψ〉|0〉 = |ψ〉|ψ〉.

Measurement In quantum computing, measurement is the way to observe a quantum state.
We can use it to obtain classical information, as well as to distinguish between different states.
A measurement is defined as a set of operators {Mm}i such that ∑mM

†
mMm = id, where the

index m corresponds to the classical outcome of the measurement. Given a state ψ, performing
such a measurement on it yields outcome m with probability

p(m) =
〈
ψ
∣∣∣M †

mMm

∣∣∣ψ〉
(this is the Born rule) and the state evolves as follows

|ψ〉 = Mm|ψ〉√
p(m)

Note that because we are ‘opening’ the quantum system, its evolution is no longer a unitary.

Classical control This refers to using the classical outcomes of a prior measurement to
control the application of later gates.

26 2.3. Quantum Computing and String Diagrams

Demolition and non-demolition measurement Informally, for some instances of measure-
ments, we can distinguish two variants: demolition and non-demolition. One nice example is the
computational basis measurement. The non-demolition variant would be the set {|0〉〈0|, |1〉〈1|}:
given a state of the form α|0〉+β|1〉, doing a computational basis measurement gives the classical
outcome 0 (resp. 1) and evolves the state to |0〉 (resp. |1〉) with probability |α|2 (resp. |β|2).
The demolition variant would be the set {〈0|, 〈1|}: performing it demolishes the quantum state,
but the classical outcomes still occur, and so with the same probabilities as above.

No-go: no-signalling When two physically separated qubits are entangled, measuring one
collapses the state of the other qubit instantaneously. Thus, it might seem like this allows
simultaneous communication of information. However, this is not true according to the no-
signalling theorem: it is not possible for the observer of one qubit to communicate any information
in the information-theoretic sense to the observers of the other qubit via measurement, and so
despite the collapsing of the other qubit’s state.

Global and Local Phase The astutious reader may have noticed that the formulation of the
non-demolition computational basis measurement has omitted a factor of α/|α| (resp. β/|β|)
on the post-measurement state. This is allowed because it is a global phase. A global phase
is a factor eiθ applied globally to the quantum state. For example, a state eiθ|ψ〉 is said to be
equal up to a global phase to |ψ〉. Importantly, the measurement statistics of these two states
are completely equal, which is why we can often work up to the global phase. On the other
hand, local phases are factors which apply locally to a part of the state. For example, the states
|+〉 = 1√

2(|0〉 + |1〉) and |−〉 = 1√
2(|0〉 − |1〉) differ by a local phase on |1〉. Local phases cannot

be ignored; indeed, |+〉 and |−〉 have very different measurement statistics. For instance, we
can distinguish them using the measurement {|+〉〈+|, |−〉〈−|}.

Quantum Circuit Model In quantum computing, algorithms are often described in terms
of the quantum circuit model. It is a computational model in which we are allowed to create
new qubits, apply unitaries, perform computational basis measurements, and use measurement
results to control later gates classically.

2.3.1.2 Quantum Computing with Mixed States

Intuition As Nielson and Chuang present it, the language of density operators is used to
describe a system whose state is not completely known ([42] §2.4). In particular, it allows us to
describe quantum systems which are in one of a number of states |ψi〉, with probability pi each.
We call the set {(pi, |ψi〉)} an ensemble of pure states or a mixed state, with a density operator
of the form

ρ =
∑
i

pi|ψi〉〈ψi|.

2. Background 27

One can already begin to notice an advantage of using this formalism: it allows us to ignore the
global phase. If we have a pure state eiθ|ψ〉, its density operator would be eiθ|ψ〉〈ψ|e−iθ = |ψ〉〈ψ|.

Formal definition We now proceed to the formal characterisation of density operators. We
will write Mn(C) as the set of complex matrices. Then, the qubit type will be M2(C).
Definition 2.3.1 (Positive Semidefinite Matrix). A matrix M ∈ Mn(C) is said to be positive
semidefinite if for all |ψ〉 ∈ Cn, 〈ψ|M |ψ〉 ≥ 0.
Definition 2.3.2 (Trace). Let ρ ∈ Mn(C). The trace is defined as trρ = ∑n

i=1〈ei|ρ|ei〉, where
the |ei〉’s form an orthonormal basis of Cn.
Definition 2.3.3 (Mixed state, Density operator). A density operator is a map ρ ∈ Mn(C),
which is positive semi-definite and has trace 1.

The trace 1 condition generalises the sum of probabilities being 1. The positive semidefiniteness
is equivalent to having the general form of ρ = ∑

i pi|ψi〉〈ψi| (where |ψi〉 is normalised). Note
that the decomposition is not unique. For example, 1

2(|+〉〈+| + |−〉〈−|) = 1
2(|0〉〈0| + |1〉〈1|).

Thus, as we shall see later, summing over the possibilities ‘discards’ the classical information of
the branch we are on.

Now, we present the primitives of quantum computing in the language of density operators.

• Preparing a new qubit at state |0〉: ρ 7→ ρ⊗ |0〉〈0|.

• Applying a unitary U ∈ Mn(C): ρ 7→ UρU †

• Performing a measurement {Mm}m: The probability of each outcome is given by the new
Born rule, which can be derived from the previous one:

p(m) =
∑
i

pip(m|i) =
∑
i

pi
〈
ψi
∣∣∣M †

iMi

∣∣∣ψi〉
=
∑
i

pitr
[
M †

mMm|ψi〉〈ψi|
]

= tr
[
M †

mMmρ
]

And when p(m) > 0, the state evolves as follows:

ρ → MmρM
†
m

p(m)

Quantum Channel The notion of evolution of the quantum state is defined with the quantum
channel formalism.
Definition 2.3.4 (Positive and Complete Positive Map). A map Φ : Mn(C) → Mk(C) is
positive if it maps positive semi-definite matrices to positive semi-definite matrices. It is
complete positive if for any auxiliary system R of any size (of the form R = Mk(C) for some
k ∈ N), idR ⊗ Φ is positive.

28 2.3. Quantum Computing and String Diagrams

Definition 2.3.5 (Quantum Channel). A quantum channel between state spaces Mn(C) and
Mk(C) is a linear map Φ : Mn(C) → Mk(C) which is complete positive and trace-preserving
(i.e. tr[Φ(ρ)] = tr[ρ]).

The CP condition ensures that positive-semi-definiteness is preserved and that this is preserved
even when parallel-composed with an arbitrary auxiliary system. The second is analogous to
preservation of probability.

Note that this additional property holds. Informally, it says that if a density operator corresponds
to a probability of 0, then it has to be the zero matrix.
Lemma 2.3.6. If a density operator ρ ∈ Mn(C) has trace 0, then it is the 0 matrix.

Proof. Let |i〉 be the ith computational basis vector for i = 0...n− 1. Assume that ∑i〈i|ρ|i〉 = 0.
WLOG we can further assume that ρ = ∑

j|ψj〉〈ψj| where |ψj〉 is not necessarily normalised.
Then, we can write ∑

i

〈i|ρ|i〉 =
∑
j

∑
i

|〈ψj|i〉|2 = 0

so each of 〈ψj|i〉 is 0, for all i, and because the |i〉’s form a basis, the only possible vector that
satisfies this is |ψj〉 = 0 (the zero vector) for all j, which concludes the proof.

Now, let’s give some example channels.
Example 2.3.7. State preparation can be taken as a CPTP map C → M2(C), and unitary
evolution is a CPTP map Mn(C) → Mn(C).

Measurement, in contrast, does not have a straightforward interpretation. One way is to
completely discard the classical measurement outcome. Then, it corresponds to summing over
all the possible outcomes:
Example 2.3.8 (Noisy measurement channel (§4.5.1 of [72])). Let {Mm} be a measurement. If
we measure and lose the measurement outcome, the corresponding CPTP map is:

Φ : ρ 7→
∑

m:p(m)>0
p(m)MmρM

†
m

p(m) =
∑
m

MmρM
†
m

(well-defined because of lemma 2.3.6).

Note that if we are considering a demolition variant of the channel, this map just corresponds to
discarding both the classical and the quantum outcome. If we are considering a non-demolition
variant, we get a map that corresponds to decoherence (measuring, then encoding the classical
outcome as the corresponding quantum state and discarding the classical outcome). However,
there is no way of giving a demolition measurement which destroys the quantum state and keeps
the classical outcome.

Finally, quantum channels being linear maps, we could always work with their adjoints instead.

2. Background 29

Remark 2.3.9 (Adjoint channel). For any linear map Φ : Mn(C) → Mk(C), we can define
its adjoint map Φ† : Mk(C) → Mn(C) with respect to the Hilbert-Schmidt inner product
〈C,D〉 , tr[C†D] for C,D ∈ Mn(C). We can then show that the adjoint of CP maps are CP
maps and that the adjoint of CPTP maps are ‘CPU’, i.e. CP and Unital, meaning that the map
preserves the identity matrix: Φ(id) = id.
Remark 2.3.10 (Schrödinger and Heisenberg pictures). The duality between CPTP and CPU
maps gives rise to two ways of characterising quantum computing: the Schroedinger picture
is where the state evolves, but the observables stay constant, and the quantum channels from
operator spaces A to B there correspond to CPTP maps Φ : A → B; the Heisenberg picture
is where we make the observables evolve instead of the state, and the corresponding quantum
channel will be a CPU map Φ† : B → A which evolves the observable space.

2.3.1.3 Including classical information

To include classical information, what we need is a coproduct-like structure ⊕ used to represent
classical branching. Then, we can represent the classical boolean type as C ⊕ C. In this section,
we sketch the more common way based on operator algebras and, in particular, C* Algebras:
Definition 2.3.11 (C* Algebra (e.g. [30, 50])). A complex algebra consists of a vector space V
over C and an operation · : V × V → V linear in each argument. A C* algebra A is a complex
algebra A along with an additional operation ∗ : A → A such that

x∗∗ = x

(ax)∗ = āx∗

(x + y)∗ = x∗ + y∗

(xy)∗ = y∗x∗

1∗ = 1

and A has a norm which makes it a Banach algebra, that is:

||λx|| = |λ|||x||

||x + y|| ≤ ||x|| + ||y||

||xy|| ≤ ||x|| · ||y||

for all x,y ∈ A and λ ∈ C, and A is complete in the metric d(a, b) = ||a− b||. Moreover, the
following identity is satisfied:

||x∗x|| = ||x||2.

We can now write Mn(A) as the n× n matrices with A entries, for any C* algebra A.

Luckily, in this thesis, we only work with finite-dimensional C* algebras, which are exactly the
finite direct sums of matrix algebras up to isomorphism. This saves us from dealing with the
complex mathematical definition presented above.

30 2.3. Quantum Computing and String Diagrams

Example 2.3.12 (Matrix Algebra). The set Mn(C) has a C* algebra structure, with (−)∗ ,

(−)†, · defined as matrix multiplication and + as addition.
Definition 2.3.13 (Direct sum of C* algebras). Let A,B be C* algebras. Their direct sum, A⊕B,
is defined by the set {(a, b) | a ∈ A, b ∈ B}, the algebraic structure is defined component-wise,
and the norm is given by ||(a, b)|| = max{||a||, ||b||}.
Proposition 2.3.14 (Finite Dimensional C* Algebras). All finite dimensional C* algebras are
a finite direct sum of matrix algebras, i.e. of the form ⊕

i Mni(C), up to isomorphism.

We shall see later that the direct sum ⊕ is a biproduct (i.e. both a product and a coproduct) in
the category we are interested in. We therefore use it to model classical branching.

Now, we proceed to define the type of maps between them that we are interested in.
Definition 2.3.15 (Positive and Complete Positive maps). Let A be a C* algebra. A positive
element a ∈ A is a sum of elements of the form b∗ · b. A linear map between C* algebras A → B

is positive if it maps positive elements to positive elements; a complete positive map Φ : A → B

is one such that for all k ∈ N, Φ : Mk(C) ⊗ A → Mk(C) ⊗B is complete positive.
Remark 2.3.16. For C* algebras, we could equivalently define positive elements of A as those
of the form b∗b for some b ∈ A [30, 28].

This notion of positive element does indeed generalise positive semi-definite matrices.
Example 2.3.17. Positive elements in Mn(C) are exactly the positive semi-definite matrices
(lemma IV.3.2 of [70]).

Now, to recover the notion of density matrices, we need one more structure:
Definition 2.3.18 (Trace). For a finite dimensional C* algebra ⊕i Mni(C), the trace is defined
as tr((ρi)i ∈ ⊕

i Mni(C)) , ∑
i tr(ρi).

So given a finite-dimensional C* algebra ⊕i Mni(C), a positive element of trace 1 is a vector of
positive semi-definite matrices (ρi ∈ Mni(C))i, such that ∑i tr(ρi) = 1. We can then interpret
tr(ρi) as the probability of the ith branch, and 1

tr(ρi)ρi the density operator it corresponds to.

Finally, the tensor product is inherited from the structure of the matrix algebras and distributes
over the direct sum:(⊕

i

Mni(C)
)

⊗

⊕
j

Mmj(C)
 ∼=

⊕
i,j

[
Mni(C) ⊗ Mmj(C)

]
(2.1)

Now, we can finally express measurements as CPTP maps, which take a quantum state and
output classical information.
Example 2.3.19 (Computational basis measurement). The computational basis measurement
can be written as the map in M2(C) → M1(C) ⊕ M1(C) = C ⊕ C defined as(

a b
c d

)
7→ (a, d)

2. Background 31

or in bra-ket notation:
ρ 7→ (〈0|ρ|0〉, 〈1|ρ|1〉)

Convention 2.3.20. From here onwards, we write qbit to denote M2(C) and bit to denote
C ⊕ C.

2.3.2 Compact closed categories and String Diagrams: a CQM
primer

String diagrams are an alternative graphical representation of morphisms in a compact closed
category, which is a symmetric monoidal closed category with extra structure. We give a brief
presentation below. For more detail, we invite the reader to refer to the textbooks by Coecke
and Kissinger [22] and Heunen and Vicary [28].

2.3.2.1 Monoidal Categories

String diagrams are specialised to represent morphisms: wires correspond to objects, and boxes
to morphisms.

f

Y

X
The empty wire is then the identity morphism, composition is done by connecting wires together,
and the monoidal product ⊗ is represented by juxtaposing the component string diagrams.

id = g ◦ f =
f

Y

X

g

Z

X

Z

f

Y

X

f ′

Y ′

X ′

f ⊗ f ′ =

X ⊗X ′

Y ⊗ Y ′

Graphically, the famous interchange law (g ⊗ g′) ◦ (f ⊗ f ′) = (g ◦ f) ⊗ (g′ ◦ f ′) then follows
naturally:

f

Y

X

f ′
Y ′

X ′

g

Z

g′
Z ′

=
f

Y

X

f ′
Y ′

X ′

g

Z

g′
Z ′

In fact, this is one of the original motivations for using string diagrams for monoidal categories.

The monoidal unit I is represented as the empty diagram. Then, we can represent states
(ρ : I → A morphisms), effects (ψ : A → I) and scalars s : I → I as follows:

ρ

A
ψ

A

s

32 2.3. Quantum Computing and String Diagrams

One important fact to know is that the string diagrams are a sound and complete representation
of monoidal categories, as per the following theorem:
Theorem 2.3.21 (String diagrams and monoidal categories (theorem 1.8 [28])). A well-typed
equation between morphisms in a monoidal category follows from the axioms iff it holds in the
graphical language up to planar isotopy.

Here, planar isotopy is the fancy way of saying that two diagrams can be continuously deformed
into one another within a rectangular plane, with input and output wires touching the lower
and upper boundaries of the rectangle.

For symmetric monoidal categories, we can interpret the symmetry morphism σX,Y as

X

X

Y

Y

Then, the theorem above holds for three-dimensional isotopy with the additional ability of
moving wires past each other.

2.3.2.2 Compact closed categories

Now, we will start defining the relevant categorified notions of linear algebra. We start by
defining dual objects, akin to dual vector spaces in linear algebra.
Definition 2.3.22 (Dual object). In a monoidal category, an object L is the left dual to an
object R (or R is a right dual to L), written as L a R, when there are morphisms η : I → R⊗L

(the unit) and ε : L⊗R → I (the counit) such that the following diagrams commute:

L L⊗ I L⊗ (R ⊗ L)

L I ⊗ L (L⊗R) ⊗ L

∼=

idL

L⊗η

∼=

∼= ε⊗L

R I ⊗R (R ⊗ L) ⊗R

R R ⊗ I R ⊗ (L⊗R)

∼=

idR

η⊗R

∼=

∼= R⊗ε

If R is both right and left dual of L, we say that R is L’s dual, written as R = L∗.

In the graphical calculus, we express duality L a R using arrows on the wires: left duals have
the arrow pointed upwards, whereas right duals have them pointed downwards.

L R

2. Background 33

The unit and counit are written as follows:

R L

RL

and are, from here on, referred to as the cup and the cap, respectively.

The equations these have to satisfy are then written as written as:

L
R

L

=
L

R
L

R

=
R

When objects are their own duals, A ∼= A∗, we can omit the arrows on the cups and caps.
Definition 2.3.23 (Compact closed category). A (symmetric) compact closed category is a
symmetric monoidal category where every object has a dual.

In a compact closed category, the dualising map (·)∗ can canonically be extended to a
contravariant functor (see [64]), where f ∗ : B∗ → A∗ can intuitively be thought of as the
transposition of the map f . Graphically, we now represent morphisms f : A → B as:

f

and its dual f ∗ as:

f , f

Finally, a symmetric compact closed category is, in particular, symmetric monoidal closed with
the internal hom defined by [A,B] , A∗ ⊗B. For any morphism f : A → B one can form the

34 2.3. Quantum Computing and String Diagrams

corresponding exponential object in I → A∗ ⊗B using the unit ηA as:

A

f

B

We will refer to the mapping from C(A,B) to C(I, [A,B]) as the ‘abstraction map’, because it
corresponds to a lambda abstraction. The evaluation map is defined by the corresponding cap
eval : A⊗ (A∗ ⊗B) → B = (εA ⊗B), such that we do indeed have:

A

f

B

eval

= f .

Remark 2.3.24 (Daggers). There is one structure that we omitted: adjoints (i.e. the conjugate
transpose), which are useful for the analysis of Hilbert spaces. We did so intentionally, for we
would not need it in the development. In CQM, they are axiomatised as ‘daggers’ (§2.3 [28]):
a dagger category C is one equipped with a contravariant functor † : C → Cop that is identity
on the objects, and a dagger compact closed category is one such that † is compatible with the
tensor product and the dual objects. In graphical calculus, one can then write f † : B → A as:

f † , f

Combining dual objects and daggers gives a notion analogous to taking the complex conjugate of
a linear map between Hilbert spaces:

(f †)∗ , f

Convention 2.3.25. In this thesis, we only use the trapezoidal boxes to denote morphisms
when we explicitly need compact closure.

2. Background 35

2.3.2.3 Linear structures

In addition, we need a categorified way to describe linear structures. Indeed, if density matrices
are states, we want to model the ability of adding them together or multiplying them by a
scalar.

Multiplicative structure Recall that scalars in a monoidal category C are simply morphisms
of the form I → I.
Definition 2.3.26 (Scalar multiplication). Let s : I → I and f : A → B, we define scalar
multiplication s • f as the morphism A → I ⊗ A

s⊗f→ I ⊗B → B.

Thus, graphically, scalar multiplication is simply juxtaposing f with s.

fs

Zeroes, Biproducts and Superposition rules We now develop the additive structure.
Definition 2.3.27 (Zero object). Let C be a category. A zero object 0 ∈ C is an object which
is both the initial and terminal object. Then, for any A,B, we can note the unique morphism
A → 0 → B as 0A,B.
Definition 2.3.28 (Biproduct). Let C be a category. For any A,B ∈ C, a biproduct A⊕B is
both a product and a coproduct of A and B. We then note the injections i1 : A → A⊕B (resp.
i2 : B → A⊕B) and p1 : A⊕B → A (resp. p2 : A⊕B → B).

This structure is related to what Selinger calls a commutative monoid enrichment [64], intuitively
meaning that each morphism set C(A,B) is a commutative monoid. This has been explicitly
characterised by Heunen and Vicary [28] as a ‘superposition rule’:
Definition 2.3.29 (Superposition rule). A superposition rule is an operation (f, g) 7→ f + g

defined for all morphism A
f,g→ B such that + is commutative and associative and has units

(named uA,B : A → B). Additionally, ◦ distributes over + and units (e.g. u = f ◦ u = u ◦ g for
any suitable f, g).
Lemma 2.3.30 (Lemma 2.14 of [28]). If C has a zero object 0, then uA,B = 0A,B.

Biproducts and superposition rules are very much related:
Proposition 2.3.31 (Definition 2.18, Lemma 2.19 of [28]). If a category C has a zero object
0 and a superposition rule +, then a biproduct A1 ⊕ A2 in C is an object along with injection
morphisms ik : Ak → A1 ⊕A2 and projection morphisms pk : A1 ⊕A2 → Ak (k = 1, 2) satisfying

• pk ◦ ik = idAk

• 0Aj ,Ak = pk ◦ ij (for j, k = 1, 2, j 6= k)

36 2.3. Quantum Computing and String Diagrams

• idA1⊕A2 = i1 ◦ p1 + i2 ◦ p2

Proof. An object as defined satisfies the universal properties of biproducts by using

〈f, g〉 : X → A1 ⊕ A2 = i1 ◦ f + i2 ◦ g

for f : X → A1 and g : A2 and

[f, g] : A1 ⊕ A2 → X = f ◦ p1 + g ◦ p2

for f : A1 → X and g : A2 → X.

Conversely, a biproduct induces a canonical superposition rule that is compatible with it:
Proposition 2.3.32 (Lemma 2.21 [28] and §2.5 [64]). If a category C has biproducts, then it
has a unique superposition rule defined with:

[idB, idB] ◦ (f ⊕ g) ◦ 〈idA, idA〉

If C is a monoidal category, and if ⊗ distributes over +, it also automatically implies that scalar
multiplication distributes over with +. However, this is not guaranteed. That said, if it were, it
would also be compatible with the biproduct:
Proposition 2.3.33. In a monoidal category with a superposition rule + and biproducts ⊕,
⊗ distributes over + (i.e. f ⊗ (g + h) = f ⊗ g + f ⊗ h and its symmetric case), iff there is a
natural isomorphism A⊗ (B ⊕ C) ∼= (A⊗B) ⊕ (A⊗ C) (and its symmetric case).

Proof sketch. For (=⇒), we construct the isomorphism using the universal property of ⊕, i.e.
〈A⊗ p1, A⊗ p2〉 and [A⊗ i1, A⊗ i2] and use the assumption to compose to identity.

For (⇐=), we simply decompose f ⊗ (g + h) = f ⊗ ([id, id] ◦ (g ⊕ h) ◦ 〈id, id〉) and use the
property that ⊗ distributes over the biproduct ⊕ to conclude.

Matrix notation In a category with biproducts, we can write morphisms in the form of a
matrix as follows:
Definition 2.3.34 (Matrix). For a collection of maps fm,n : Am → Bn, we define their matrix
as a morphism (fm,n) : ⊕mAm → ⊕

nBn as follows:

(fm,n) ,
∑
m,n

(pm; fm,n; in)

And in fact, all morphisms f : ⊕m am → ⊕
nBn can be uniquely characterised by their

components fm,n : Am → Bn = im; f ; pn, by the universal property of biproducts.

Composition can then simply be done as in matrix multiplication:(⊕
m

Am
f→
⊕
n

Bn
g→
⊕
k

Ck

)
m,k

=
∑
n

fm,n; gn,k

2. Background 37

Interaction with compact closure If a symmetric monoidal category C with biproducts
and a zero object is compact closed, the zero object 0 will be its own dual and A⊗0 ∼= 0⊗A ∼= 0
(§3.3.1 [28]). Moreover, the monoidal product ⊗ distributes over + and ⊕. Finally, the duals
are preserved by biproducts, i.e. the dual of A⊕B will be the component-wise dual A∗ ⊕B∗

(§3.3.2 [28]).

Graphical notation of the additive structure Assume that ⊗ distributes over + (and
equivalently over the corresponding biproduct ⊕). Then, we can write sums directly in diagrams:

f0 g

h
+
f1 g

h
=
∑
i

 fi g

h

=

fi g

h∑
i=0,1

=
fi g

h∑
i=0,1

Likewise, f ⊗ 0 = 0 is also not guaranteed, but when it does, we can make 0 boxes absorb
everything.

0

h
= 0 f = 0

Remark 2.3.35. We could further axiomatise this sort of category where ⊗ distributes over ⊕
and where 0 absorbs ⊗ as a rig category, or furthermore as a bipermutative category [30], but
we choose not to introduce this formalism because this section focuses on introducing the string
diagrams as a tool, not as an object of study.

Free biproduct completion When we have a category C with a superposition rule (enriched
over commutative monoids), we can construct the biproduct completion C⊕ as follows (e.g.
[64]): objects are finite tuples [A1, A2...An] for Ai ∈ C, and morphisms are given by matrices
of morphisms in C. Then, C⊕ has biproducts, and the singleton functor F : A 7→ [A] is an
embedding. When C is compact closed, and its monoidal product ⊗ is linear (distributes over
+ and is absorbed by 0), then it follows that C⊕ is compact closed by taking the dual objects
component-wise.

2.3.3 The category of finite dimensional C* algebras and CP maps

We are now ready to construct the working category we will use to model quantum computing.
We do so using Huot and Staton’s construction [30]. An equivalent alternative could be a
biproduct completion on the category of matrix algebras, which is the approach taken by [64].

38 2.3. Quantum Computing and String Diagrams

Definition 2.3.36 (Category of finite dimensional C* algebras and CP maps). The category
CP has, as objects, lists of positive natural numbers, and morphisms from [ni]i → [mj]j are
defined as the complete positive maps ⊕i Mni(C) → ⊕

j Mmj(C). Composition is composition
of CP maps.

This category has the following structure.

Biproduct and zero object ⊕ is given by concatenation of lists (identified with the direct
sum). If we have a biproduct M1 ⊕M2, its projections are given by pk : (m1,m2) 7→ mk, and its
injections by i1 : m1 7→ (m1, 0) and i2 : m2 7→ (m2, 0) where 0 is a list of zero matrices.

The empty list 0 = [] is the zero object (identified with the trivial C* algebra {0} = M0(C)).

We remark that CP consists exactly of objects of the form Mn(C) and their biproducts, and
thus we can consider all morphisms Φ : [ni]i → [mj]j as matrices (Φi,j), and composition as
matrix multiplication.

Superposition rule Given (Φi,j), (Φi,j) : ⊕iAi → ⊕
j Bj, their superposition rule Φ + Ψ is

simply the component-wise addition (Φi,j + Ψi,j).

Symmetric Monoidal Structure The monoidal product ⊗ is defined on objects as [ni]i=1...k⊗
[mj]j=1...p = [n1m1...n1mp..., nkm1...nkmp], and on morphisms as Φ : A → [m], Ψ : B → [n] by
(Φ ⊗ Ψ) : A⊗B → [nm] : (M ⊗M ′) 7→ (Φ(M) ⊗ Ψ(M ′)). The monoidal unit is then simply [1]
(identified with the unit C* algebra C). Notice that this construction strictifies the isomorphism
we showed in eq. (2.1). This structure is symmetric because the underlying tensor product is
symmetric.

These two structures clearly satisfy that 1- ⊗ distributes over ⊕, and that 2- ⊗ is absorbed by
the zero object []. This allows us to use the sum notation and the 0 maps.

Compact closure Every object X ∈ CP is self-dual. For singleton objects [n], the cup and
cap are defined respectively as η[n] = ∑

i,j [(|i〉 ⊗ |i〉)(〈j| ⊗ 〈j|)] (where the |i〉’s form a basis
of Cn) and ε[n] : (ρ : [n] ⊗ [n]) 7→ ∑

i,j [(〈i| ⊗ 〈i|)ρ(|j〉 ⊗ |j〉)]. For arbitrary biproducts of such
singletons, the cup and cap can be defined component-wise.
Remark 2.3.37. Compact closure only holds for finite dimensional C* algebras; for general
infinite dimensional C* algebras, the cups and caps are not well-defined because they would be
unbounded linear operators (e.g. [28]).

2. Background 39

CP as a biproduct completion : We could alternatively construct CP as a free finite
biproduct completion of CPM, the compact closed category of natural numbers and CP maps
Mn(C) → Mk(C) (i.e. the category of unnormalised density operators and CP maps between
them). Indeed, CPM is symmetric compact closed and has a (finite) superposition rule defined
as usual by addition.

States CP maps of the form φ : C → Mn(C) are exactly the positive elements of Mn(C) (e.g.
example 7.8 in [28]). In fact, this is because φ is a linear map, which means that we need only
consider the matrix obtained at φ(1). If φ is additionally trace-preserving, then trφ(1) = 1,
making it a density operator.

In general, a map ψ : C → ⊕
i Mni(C) corresponds to a list of density matrices [Mi]i; when

normalised (when ψ is trace-preserving), we interpret the trace of each component matrix tr(Mi)
as the probability of that i-th branch.

Effects If we reason in terms of the adjoints of the states, we can easily see that the effects
ψ : A → C correspond to ‘choosing a particular measurement outcome’, or equivalently the
component of a demolishing measurement.

Computational basis states and effects In this thesis, we will write the computational
basis states in C → M2(C) as

i

and their corresponding effects Φi : M2(C) → C , ρ 7→ 〈i|ρ|i〉 as

i

for i = 0, 1. This can generalise to systems with more qubits in the standard way.

Scalars A scalar is a complete positive map of the form s : C → C, which corresponds exactly
to a non-negative real number. The number can be taken as s(1) by linearity, and because
1 ≥ 0, by positivity it follows that s(1) ≥ 0. Thus, we write the scalars directly as the real
numbers, without the circle:

Φk

40 2.3. Quantum Computing and String Diagrams

CPTP and CPU We give two important subcategories of CP:

• The CPTP category is the subcategory of CP with only the trace preserving maps as
morphisms.

• The CPU category is the subcategory of CP with only the unital maps as morphisms.
Proposition 2.3.38. We have the isomorphism of categories CPU ∼= CPTPop.

3
Sums and Tensors of Parameterised Algebraic

Theories

In section 2.2 of the background, we informally introduced some basic concepts of universal
algebra, as well as how to use algebraic theories to model effects. We have also remarked that
simple algebraic theories were insufficient to model more general computational effects. In
this chapter, we introduce the generalised notion of algebraic theory we work in, explicitly
characterise the semantic object generated by a syntactic theory, and construct the standard
ways of combining algebraic theories (sums and tensors, cf. remark 2.2.6). These constructions
and, in particular, the tensor, will be useful for giving a precise mathematical characterisation
of the algebraic theory we will study in the later chapters, I/O ⊗ QUANTUM.

In more detail, we start in section 3.1 by formally introducing the syntactic notion of parame-
terised algebraic theory presented by Staton in three separate works [67, 69, 68]. This will allow
for operations of the form op(~p, (~qi.ti)i), consuming the parameters from ~p, choosing one of the
i branches, and producing new parameters ~qi, which are then used in the ti’s. In this thesis,
we will only concern ourselves with single-sorted theories, i.e. where the parameters are of the
same sort (e.g. qubit). Then, in section 3.2, we present the semantic objects (particular kinds
of enriched Lawvere theories) corresponding to the syntactic notion of parameterised algebraic
theory and demonstrate this correspondence by explicitly constructing the enriched Lawvere
theory generated (‘presented’) by a syntactic parameterised theory (theorem 3.2.21). This will,
in section 3.3, allow us to show the existence of sums and tensors for all presented enriched
Lawvere theories (theorems 3.3.11 and 3.3.15), which is the main novel result of this chapter.

41

42 3.1. Syntactic Framework for Single-Sorted Parameterised Algebraic Theories

(var)
Γ, x : p,Γ′ | a1...ap ` x(a1...ap)

Γ | ∆ ` t ι : structural map
(struct)

Γ | ∆ι ` tι

{Γ | ∆, b1...bmi ` ti}i=1...k op : (p | m1...mk) (op)
Γ | ∆, a1...ap ` op(a1...ap; b1...bm1 .t1, ..., b1...bmk .tk)

Figure 3.1: Typing rules for parameterised algebraic theories

3.1 Syntactic Framework for Single-Sorted Parameterised
Algebraic Theories

We start by introducing the framework in which we insert ourselves. This section is a synthesis
of the definitions of Staton’s framework for PATs [67, 69].

3.1.1 Syntactic framework

Definition 3.1.1 (Arity). An arity (p | m1...mk) is a tuple of a parameter p and a list of k
natural numbers m1, ...,mk.

We write op : (p | m1...mk) if op takes k parameters of arities m1, ...,mk and returns a result
of arity p. We interpret such an operation as taking p units of resource, choosing a branch
i ∈ {1...k}, and returning mi units of the same resource.
Definition 3.1.2 (Signature). A signature is a set of operations O such that for each op ∈ O
there is an associated arity, written as op : (p | m1...mk).
Definition 3.1.3 (Terms). The terms of the language are defined inductively as follows:

t := op(a1...ak; b1...bm1 .t1, ..., b1...bmk .tk) | x(a1...ap) (Terms)

where x, y, z are computation variables and a, b, c are parameters. Bound parameters are taken
up to α-renaming.
Definition 3.1.4 (Type system). The typing sequent is Γ | ∆ ` t, where Γ is the ‘order 1’
context of computation variables associated with their valences (the number of parameters they
depend on) and ∆ is the ‘order 0’ context of parameters, which we think of as resources. The ∆
is assumed to contain no duplicates. The typing relation is defined as the least relation satisfying
the rules in fig. 3.1 where ι is a structural map of resources in a set I.

To make the meaning of structural map precise, we first define substitution as follows:

3. Sums and Tensors of Parameterised Algebraic Theories 43

Definition 3.1.5 (Parameter Substitution). For any well formed terms Γ | a1...ap ` t we define
t[b1...bp/a1...ap] inductively as:

c[~b/~a] = c (if c 6= a` for any `)

a`[~b/~a] = b`

x(c1...cq)[~b/~a] = x((ci[~b/~a])i=1...q)
op(~c, (~di.ti)i)[~b/~a] = op((cj[~b/~a])j, (~di.ti[~b/~a])i) (if for all i, `, b` /∈ ~di and a` /∈ ~di)

where parameter equality is syntactic.
Definition 3.1.6 (α-equivalence). We say two well-formed terms Γ | ∆ ` t, t′ are α equivalent
written as Γ | ∆ ` t 'α t

′ if they can be α-renamed to each other. In other words, the 'α

relation is the least congruence satisfying

Γ | ∆, a1...ap ` op(~a, (~bi.ti)i) 'α op(~a, (~ci.ti[~ci/~bi])i).

Definition 3.1.7 (Computation variable substitution). For any well formed terms Γ | ∆j ` tj

for all j, any term t′ and any computation variable yj, we partially define t′{∆j ` tj/yj}j as
follows:

x(a1...ap){∆j ` tj/yj}j = x(a1...ap) (if ∀j.x 6= yj)
x(a1...ap){∆j ` tj/yj}j = ti[a1...ap/∆i] (if ∃i. yi = x ∧ p = |∆i|)

op(~a; (bi.ti)i){∆j ` tj/yj}j = op(~a; (bi.ti{∆j ` tj/yj}j)i)

Then, we enforce that I satisfies the following property:
Definition 3.1.8 (Structural maps). The set of structural maps I must be

• isomorphic to the set of all well-formed terms of the form x : |∆| | a1...a|∆ι| ` x(b1...b|∆|),
where {b1...b|∆|} ⊆ {a1...a|∆ι|};

• such that for every instance of the (struct) rule where ι is of the form above

Γ | ∆ ` t

Γ | ∆ι ` tι

we have that
tι = ι{∆ ` t/x} = t[b1...b|∆|/∆].

We note that the above definition is the unique one satisfying the substitution lemma:
Proposition 3.1.9 (Substitution Lemma (Computation variables)). Assume Γ | ~nj ` tj for all
j, and (yj : nj)j | ~p ` t′, then t′{~nj ` tj/yj}j exists and Γ | ~p ` t′{~nj ` tj/yj}j.

Proof. By simple rule induction, and in the (var) case, because the typing relation is compatible
with alpha conversion.

44 3.1. Syntactic Framework for Single-Sorted Parameterised Algebraic Theories

System Parameters Rules included Ctx0
Bij Linear (exch) Bij
Inj Affine (exch), (wk) Inj

Cart Cartesian (exch), (wk), (contr) FinSet

Table 3.1: Substructural systems

The choice of the structural maps ι depends on the resource we want to model with the
parameters. In this text, we only consider three systems of structural maps: Bij for linear
parameters, Inj for affine parameters and Cart for cartesian (normal) parameters.

We can alternatively present the (struct) rule as the following more familiar rules:
Γ | ∆ ` t

(exch)
Γ | σ(∆) ` t

Γ | ∆ ` t
(wk)

Γ | ∆, a ` t

Γ | ∆, a, b ` t
(contr)

Γ | ∆, a ` t[a/b]
where σ is an arbitrary permutation, and t[a/b] is the syntactic substitution of b by a in t. Note
that we use an equivalent, more general exchange rule than the usual one for our convenience.
Then, we can equivalently define our three systems by including or excluding the relevant rules
– a more familiar way to define ‘substructural’ systems for type theorists, shown in table 3.1.

The naming of the systems becomes clear given the rules: a ‘bijective’ structural map simply
reorders the input parameters; an ‘injective’ one allows weakening, hence the discarding of that
new parameter introduced by weakening; and a ‘cartesian’ one further allows contraction, hence
the copying of parameters to cover for the contracted ones. We make this idea formal in the
next section.

We can now proceed to define an algebraic theory.
Definition 3.1.10 (Axiom). Given a signature, an axiom is a pair of terms in the same context,
written as Γ | ∆ ` t = u.

The equivalence relation Γ | ∆ ` t = u is then formed by taking all the substitution instances of
the axioms and closing under reflexivity, transitivity, and congruence.
Definition 3.1.11 (Parameterised Algebraic Theory). A parameterised algebraic theory (PAT)
in the sense of [67] is a signature coupled with a set of equations associated with it.
Example 3.1.12 (Qubit quantum computing). We can model qubit quantum computing using
PATs with linear parameters. To do so, we can define operations new : (0 | 1) which creates a new
qubit at |0〉, measure : (1 | 0, 0) which performs a computational basis measurement on a qubit
and chooses the branch according to the result, modelling classical control, and applyU : (n | n),
which applies an n× n unitary U . Then, we can add equations according to the quantum circuit
model. One example could be

new(q.measure(q, x, y)) = x

which says that creating a new qubit and measuring it directly gives the first branch determinis-
tically. We will present this theory in more detail in section 4.1.1.

3. Sums and Tensors of Parameterised Algebraic Theories 45

3.1.2 Models

We define the model as in [67] for the three systems shown above. We start by defining
(Ctx0,+, 0), the monoidal category of computations depending on resources, usually taken
as a skeletal subcategory of FinSet. Its objects are natural numbers n ∈ N, thought of as
computations depending on resources, and its morphisms n → m are the structural maps of I
of the form x : n | a1...am ` x(b1...bn). We can then characterise Ctx0 explicitly for different
types of parameters, as shown in table 3.1.

• If we want linear parameters, the only structural morphisms allowed will be permutations,
i.e. ones of the form x : n | aπ(1)...aπ(m) ` x(a1...am). This corresponds exactly to the
category Bij of finite sets and bijections.

• If we want affine parameters, we want to not only allow permutations as above but
structural morphisms of the form x : n | a1...an...am ` x(a1...an), where we discard the
parameters an+1...am. In general, these maps correspond exactly to injections from an n

element set to an m element set, where we pick which n of the m parameters we wish to
preserve. In other words, we get Ctx0 = Inj.

• Finally, if we want to allow permutations, discarding, but also copying of parameters, we
will actually get Ctx0 = FinSet, whereby when in a morphism f : n → m two elements
in the domain map to the same element from the codomain, we are effectively copying the
corresponding resource and assigning it to different parameters.

Intuitively, Ctx0 can be considered a template category for the computations, specifying how
the parameters should interact with each other. Then, when taking models in a category C,
we will mandate that it provides an ‘implementation’ of this structure by specifying an action
• : Ctx0 × C → C. In particular, if X is the carrier object, then p • X will be the concrete
representation of computations depending on p parameters.
Definition 3.1.13 (Models). Let C be a category with finite products and a Ctx0-action
• : Ctx0 × C → C which preserves products on its second argument. Let P be a PAT.

A model of P in C is an object X ∈ C (the ‘carrier’) along with an interpretation for each
operation op : (p | m1...mk), JopK : ∏i=1...kmi • X → p • X. Furthermore, these morphisms
have to satisfy that for every axiom Γ | ∆ ` t = t′, JtK = Jt′K holds.

It is then a standard exercise to inductively define for each term (xi : mi)i | a1...ap ` t an
interpretation JtK : ∏imi • X → p • X, which is exactly the same as the one presented later
under definition 3.2.7.

Furthermore, by induction one can show that if an equality is derivable in a theory, then it is
true in all models (proposition 5 in [67]).

46 3.2. From presentations to [Ctx0,Set]-Enriched Lawvere Theories

3.2 From presentations to [Ctx0,Set]-Enriched Lawvere
Theories

As briefly mentioned by Staton in [67], syntactic PATs correspond exactly to a particular kind
of enriched Lawevere theory. In this section, we present this semantic object and explicit its
relations with its syntactic counterpart.

3.2.1 Enriched Lawvere Theories: enrichment or actegory

One way of presenting this is to directly jump to the notion of enriched lawvere theories
in the sense of [68]. We can then give an explicit characterisation of our PATs in terms of
[Ctx0,Set]-enriched theories.
Definition 3.2.1 (FinProd doctrine, Enriched Lawvere Theory). Let V be a category with
FinProd-basis F (i.e. the sifted colimit cocompletion of F yields V). An V-enriched Lawvere
theory following the FinProd doctrine is a V-enriched category L with F powers, equipped with a
strictly F power preserving, identity on object functor K : Fop → L.

If we ignore all the big words like ‘FinProd doctrine’, ‘sifted colimits’, ‘V-enriched category’ or
‘F power’, we can see that the structure of this definition is similar to that of ordinary Lawvere
theories (cf. definition 2.2.5): we construct a category Fop of computations and structural
morphisms between them and use it as a template for the actual theory L by means of a
structure-preserving functor K : Fop → L.

Thus, instead of trying to dissect this complex definition, we will build the template category
Fop from the ground up, adding all the structure that we need in the process. Also, we replace
enrichment with the equivalent actegorical construction to circumvent the complicated machinery
of enriched category theory.

The first thing to remark is that the category (Ctx0,+, 0) defined in the previous section already
has a lot of the structures that we need: it specifies exactly how non-branching computations
depending on p parameters should relate with each other. However, just like in classical Lawvere
theories, we additionally want to model branching computations of p parameters. Informally,
this would correspond to objects of the form p× q× r which is a list of computations depending
on p, q and r parameters respectively and do not interact with each other.

The solution is simple. Recall that for classical Lawvere theories, we have effectively taken
a free product completion of a single object X to form Fop. Likewise, here, we can take the
free product completion of Ctx0, which gives (Fop,⊗Day,よ(0)), where F is the full subcategory
of [Ctx0,Set] containing the coproducts of representables. Then, the free product in Fop is
used to model branching computations. Note that because we know that the Day convolution

3. Sums and Tensors of Parameterised Algebraic Theories 47

preserves colimits in F, it will in particular preserve coproducts. Dually in Fop, ⊗Day will preserve
products.

(
∏
i

よ(mi)) ⊗Day (
∏
j

よ(nj)) ∼=
∏
i,j

(よ(mi) ⊗Dayよ(nj)) ∼=
∏
i,j

よ(mi + nj) (3.1)

Now Fop has all the structure we wanted. But we have to specify what structure we want to
preserve in the actual category, say L. By now, the reader will have guessed our approach:
we choose to impose a product-preserving action • : Fop × L → L as a way of specifying the
relationship between computations depending on different resources:

• よ(n) • X is interpreted as ‘making a computation in X dependent on n additional
resources’ in a way that is compatible with the structure of the resources.

• Product preservation: (よ(n) ×よ(m)) •X =よ(n) •X ×よ(m) •X is interpreted as an
X-computation depending on either n or m additional resoures being the same thing as
an X-computation depending on n resources and another one depending on m resources.

Note that eq. (3.1) above precisely allows us to define the additional structure of Fop-actions in
Fop.

Now, as before, we define an Enriched Lawvere theory as follows:
Definition 3.2.2. (Enriched Lawvere theory as an ordinary category with actions) A FinProd
doctrine, [Ctx0,Set]-enriched Lawvere theory L (in the sense of [68]) is

• A category L with an Fop-action • : Fop × L → L which preserves finite products on its
left argument;

• A functor K : Fop → L which is identity on objects, and strictly preserves the Fop action.

From the definition, we derive some interesting properties which will be useful later:

• K preserves finite products. This is because Fop has finite products, and every object in Fop

is of the form X •よ(0), and K being identity on object and action preserving, it follows
that in L, any two objects X and Y have products K(X) ×K(Y) = (X×Y) •K(よ(0)) =
K(X × Y).

• The Fop-action • preserves finite products on its right argument. This is because for X,Y ∈
L and A ∈ Fop, A •K(X) ×K(Y) is equal to K(A⊗Day (X × Y)) because K is product
and action preserving. And because ⊗Day preserves ×, we get K(A⊗Day X × A⊗Day Y)
which is equal to A •K(X) × A •K(Y) by action preservation.

48 3.2. From presentations to [Ctx0,Set]-Enriched Lawvere Theories

Remark 3.2.3 (Bifunctoriality of the monoidal action). In the properties of the monoidal
action • : Fop × L → L, bifunctoriality corresponds to the following diagram, i.e. making every
morphism f : X → Y in L, i.e. every term in our theory, commute with morphisms s : A → B

in Fop, i.e. the structural maps.

A •X A • Y

B •X B • Y

A•f

s•X s•Y

B•f

This means that running a term f and then performing a structural morphism is the same as
performing that structural morphism and then running f .

Noting that Fop has the same objects as L, we could ask whether • could be extended to a bifunctor
� : L × L → L. In reality, despite being a functor on each of its arguments individually, � is
not a bifunctor. This is intuitively because, in general, we do not wish every term to commute
with every other term, i.e. we do not want our theory to be commutative necessarily.

As before, we can define a model as follows:
Definition 3.2.4 (Model of an enriched Lawvere theory). A model of an enriched Lawvere
theory L is a category C with a finite product preserving Fop-action, with a functor M : L → C
which preserves the Fop-action.

Finally, for the sake of completeness, we show that this definition is equivalent to the previous
one. We omit several technical details, for they are irrelevant to the development of this chapter’s
content.
Proposition 3.2.5. The notion of [Ctx0,Set]-enriched Lawvere theory defined in defini-
tion 3.2.2 is equivalent to an [Ctx0,Set]-enriched Lawvere theory in the sense of definition 3.2.1.

Proof Sketch following [68]. Follows from proposition 2.7 of [68] which shows that if a category
F sifted-colimit-cocompletes to V , then a category C with an Fop-action • : Fop × C → C which
preserves finite products on its left argument is equivalent to an enrichment of C in V with
powers in F. In particular, F defined above does indeed cocomplete to [Ctx0,Set] with sifted
colimits, which concludes the proof.

Remark 3.2.6 (Sound limit doctrines). In general, for arbitrary an category V, we do not
obtain a well-defined notion of V-enriched Lawvere theory for any choice of F. We have to
carefully choose F to form a ‘basis’ of V with respect to a ‘sound limit doctrine’ D in the sense
of [68]. This intuitively means that F should be a subcategory of V such that any object in V is
a D-filtered colimit of objects in F, where D-filtered colimits are just a special kind of colimit.
In our setting, we used the D = FinProd doctrine, where FinProd-filtered colimits correspond to
‘sifted’ colimits, another special kind of colimit.

3. Sums and Tensors of Parameterised Algebraic Theories 49

3.2.2 Explicit characterisation of the theory generated from a pre-
sentation

Now that we have a semantic notion of algebraic theory, we tie it back to the syntactic notion
of PAT. We will show that a PAT can be considered a presentation of an underlying Lawvere
theory by explicitly constructing the underlying theory generated by a PAT.

Syntactic Category We start by constructing a category directly from the syntax of a PAT,
where contexts are objects and terms are morphisms.
Definition 3.2.7 (Syntactic category from a presentation). Let P be a PAT. We define LP as
its corresponding syntactic category as follows:

• Objects are tuples of natural numbers,

• Morphisms (ni)i → (mj)j are defined as follows:

LP ((ni)i, (mj)j) =
∏
j

LP ((ni)i,mj)

LP ((ni)i,m) = {(xi : ni)i | ~m ` t}/ =

where = is the least congruence relation generated by the axioms.

• Identity id : (ni)i → (ni)i is defined by the term ((xi : ni)i | p1...pnj ` xj(p1...pnj))j

• Composition ◦ is defined by substitution as

((yj : nj)j | ~pk ` t′k)k ◦ (Γ | ~nj ` tj)j , (Γ | ~pk ` t′k{~nj ` tj/yj}j)k

which is well defined by proposition 3.1.9.
Proposition 3.2.8. The above definition forms a category.

Proof. Check that ◦ is well-defined modulo the equivalence relation =, which follows because it
is closed under substitution on both sides and is a congruence.

Also, check associativity and unity of ◦.

Additionally, LP has finite products by definition.
Lemma 3.2.9 (Finite Products). LP has finite products.

Proof. By definition we have that LP (−, (ni)i) ∼=
∏
i LP (−, ni). It then follows (as a consequence

of Yoneda’s lemma) that (ni)i is the finite product of the ni’s. The rest follows naturally by
doing tuple concatenations.

In more detail, we explicitly construct the morphisms corresponding to each term from their
typing derivations. As a convention, to distinguish between syntactic objects like contexts Γ,∆
and terms t from semantic objects in LP , we write the latter objects surrounded by J−K.

50 3.2. From presentations to [Ctx0,Set]-Enriched Lawvere Theories

Explicit construction of morphisms from the typing rules. We interpret natural numbers JnK =
n, where the RHS is the object in LP .

Parameter contexts ∆ are interpreted as J∆K = J|∆|K, where |∆| gives the number of parameters
of the context ∆.

Computation contexts Γ = (xi : mi)i are interpreted as JΓK = ∏
iJmiK.

An instance of the (var) rule is interpreted simply interpreted as

J(xi : mi)i | a1...ami ` xi(a1...ami)K , πi : JΓK → JmiK

The (struct) rule is interpreted as the following commutative diagram:

JΓK J∆K

J∆ιK

JtK

JtιK
JιK

where ι is taken as a non-branching structural map, or equivalently a morphism in Ctx0 (which
as we shall see later can be embedded into LP via K ◦よ). The notation follows definition 3.1.4,
where ∆ι is the new context, and tι the substituted version of t. The (op) rule is interpreted as
the following commutative diagram:

JΓK
∏
iJ∆, ~miK

J∆, ~pK

〈JtiK〉i

Jop(~p,(~mi.ti)i)K
∆•op

where ∆ • op = J(xi : mi) | ∆, ~p ` op(~p, (~mi.xi(∆, ~mi))i)K. We note that this notation comes
from the definition of the Ctx0 action later in this section, where op would be the morphism
JJ(xi : mi) | ~p ` op(~p, (~mi.xi(~mi))i)KK.

Structural Morphisms and Canonical Functor K : Fop → LP Recall that morphisms
from Ctx0 are canonically identified with the structural maps from I in the syntactic framework.
Its free product completion, Fop, contains in addition the morphisms induced from the free
product completion, i.e. projections and diagonal morphisms. It turns out that we can also
easily identify those additional morphisms with ‘branching’ structural maps in the syntactic
framework as follows:
Proposition 3.2.10 (Empty presentation gives Fop). Let P∅ be the PAT with no operations
and no equations. Then, Fop ∼= LP∅.

3. Sums and Tensors of Parameterised Algebraic Theories 51

Proof. We need only consider the morphisms in both categories, for their objects can be
canonically identified.

A morphism in Fop(∏iよmi,
∏
jよnj) is a tuple of morphisms in Fop(∏iよmi,よnj), and a

morphism in Fop(∏iよmi,よn) is necessarily of the form of a projection, followed by a morphism
in Ctx0 yoneda-embedded in Fop, by the properties of the free product completion. Therefore,
they can be identified with morphisms in LP∅((mi)i, n) of the form (xi : mi)i | p1...pn ` x(a1...amj)
for some j, where {a1...amj} ⊆ {p1...pn}. Conversely, by reasoning with the typing rules, it is
easy to see that terms of this form are the only morphisms in LP∅((mi)i, n).

Corollary 3.2.11 (Explicit characterisation of Ctx0). Ctx0 is isomorphic to the full subcategory
of L(P∅) with only singleton objects.

Proof. Follows directly from the reasoning in proposition 3.2.10.

From the above, we can easily deduce that LP contains the structure of Fop.
Corollary 3.2.12. There is a canonical identity-on-objects functor K : Fop → LP for any
presentation P .

Proof. Simply map morphisms as in proposition 3.2.10, and by renaming LP ’s objects as∏
iよ(mi) instead of tuples (mi)i, we obtain that K is identity on objects.

As a convention, from here onwards, we will call all morphisms from Ctx0 and their corresponding
image through K as ‘non-branching’ structural morphisms, and all morphisms from Fop and
their corresponding image through K as ‘branching’ structural morphisms.

Fop action We now proceed to build the Fop action. To simplify the construction, we will first
build a Ctx0 action • : Ctx0 × LP → LP which preserves products on its second argument,
and canonically extend it to an Fop action, by the following lemma:
Lemma 3.2.13. An Fop-action restricts to a Ctx0 action preserving products on its second
argument, and a Ctx0 action preserving products on its second argument canonically extends to
a Fop action.

Proof. Let •Fop : Fop × C → C and restrict it to the representable objects, we obtain directly an
action •Ctx0 : Ctx0 × C → C. Then, because •Fop preserves products on its second argument by
the reasoning in the previous section, so does •Ctx0 .

Conversely, let •Ctx0 : Ctx0 × C → C be an action that preserves products on its second
argument. Then, define:

(
∏
i

よ(ni)) •Fop X ,
∏
i

(ni •Ctx0 X)

52 3.2. From presentations to [Ctx0,Set]-Enriched Lawvere Theories

Then, we can show it is an action simply because

よ(0) •Fop X = 0 •Ctx0 X
∼= X

and ∏
i

(よ(ni)) ⊗Day
∏
j

(よ(mj))
 •Fop X

∼= [
∏
i,j

よ(ni +mj)] •Fop X

=
∏
i,j

[(ni +mj) •Ctx0 X]

∼=
∏
i,j

[(ni +mj)] •Ctx0 X

=
∏
i

ni •Ctx0 (
∏
j

mj •Ctx0 X) (product preservation)

= [
∏
i

よ(ni)] •Fop ([
∏
j

よ(mj)] •Fop X)

As noted in remark 3.2.3, the bifunctoriality of • requires every morphism in LP to commute
with non-branching structural morphisms from Ctx0. Now, from the previous development, we
know that the morphisms in Ctx0 correspond exactly to the structural maps x : n | ∆ ` x(~a)
where ~a ⊆ ∆. Thus, what we actually need to show is that syntactically, the non-branching
structural maps commute with all other terms.

We start by defining what it means for two terms t and u to be sequenced together.
Definition 3.2.14 (Sequencing). Let P be a presentation and LP be its corresponding syntactic
category. For any morphism (Γ | ∆ ` t) : JΓK → J∆K and (Γ′ | ∆′ ` t′) : JΓK → J∆K we define
the left sequencing (Γ × Γ′ | ∆,∆′ ` to u) : JΓ × Γ′K → J∆,∆′K (where Γ × Γ′ is such that for
every x : p in Γ and y : q in Γ′ there is a xy : p+ q in Γ × Γ′) inductively as follows:

op(~a, (~bi.ti)i) o u , op(~a, (~bi.ti o u)i)

x(~p) o op(~c, (~dj.uj)j) , op(~c, (~(d)j.x(~p) o uj))

x(~p) o y(~q) , xy(~p, ~q)

We can likewise define the right sequencing tn u : JΓ′ × ΓK → J∆′,∆K which is easily seen to be
equivalent. When unambiguous, we uniformly write t;u.
Lemma 3.2.15. Sequencing is well-typed and well-defined.

Proof. By rule induction.

3. Sums and Tensors of Parameterised Algebraic Theories 53

Definition 3.2.16 (Commutation of terms in a PAT). Let Γ | ∆ ` t and Γ′ | ∆′ ` u be two
terms in P . They are said to commute if

Γ × Γ′ | ∆,∆′ ` to u = un t

Lemma 3.2.17. (Every term commutes with structural maps) For any well-typed term of
the form x : n | p1...pm ` x(q1...qn) where q1...qn comes from p1...pm, and any term (yj :
nj) | r1...rk ` t we have that

(xyj : n+mj)j | p1...pm, r1...rk ` x(q1...qn) o t = tn x(q1...qn).

Proof. We will prove this for the Bij system, by induction over t. We need only consider the
non-branching structural maps of form x : n | p1...pm ` x(pπ(1)...pπ(m)) where π is a permutation.

Case (var). Then t = yj(r1...rk) where σ is a permutation. So

LHS = x(pπ(1)...pπ(m)); yj(r1...rk) = xyj(~pπ, ~r) = RHS

Case (struct). By IH we have that

(xyj : m+mj)j | p1...pm, r1...rk ` x(p1...pm) o t = tn x(p1...pm).

from which it follows that

(xyj : m+mj)j | pσ(1)...pσ(m), r1...rk ` x(p1...pm) o t = tn x(p1...pm).

where σ is a permutation.

Case (op). So we get t = op(a1...an, (b1...bk` .u`)`). By IH we have that for each `,

(xyj : m+mj)j | p1...pm,∆, b1...bk` ` x(p1...pm) o u` = u` n x(p1...pm)

Moreover, we know that

∀`. (xyj : m+mj)j | p1...pm,∆, b1...bk` ` x(p1...pm) o u`

(xyj : m+mj)j | p1...pm,∆, a1...an ` op(a1...an, (b1...bk` .x(p1...pm) o u`)`)

and likewise we get (xyj : m+mj)j | p1...pm,∆, a1...an ` op(a1...an, (b1...bk` .u` n x(p1...pm))`).
Hence by congruence we have

op(a1...an, (b1...bk` .x(p1...pm) o u`)`) = op(a1...an, (b1...bk` .u` n x(p1...pm))`)

(where we ignore the context for clarity). The rest then follows by definition of left and right
sequencing.

54 3.2. From presentations to [Ctx0,Set]-Enriched Lawvere Theories

Proposition 3.2.18 (Action). For any P , LP has a Ctx0 action • such that m • − preserves
products.

Proof. We define • : Ctx0 × LP → LP as follows:

n • (mi)i , (n+mi)i
(x : n | a1...ap ` x(b1...bn)) • ((xi : mi)i | ~pj ` tj)j : n • (mi)i → p • (pj)j

, ((xi : n+mi)i | a1...ap, ~pj ` x(b1...bn) o tj)j

where we take the n → p morphism in Ctx0 as a syntactic term of the form x : n | a1...ap `
x(b1...bn) (where b1...bn ∈ {a1...ap}) by corollary 3.2.11. Bifunctoriality is directly shown by
lemma 3.2.17.

The laws for the monoidal action can also be easily checked to hold strictly, because Ctx0 is
taken to be strict monoidal.

Finally, let m ∈ Ctx0, it can easily be shown that m • − preserves products just from the
definition above.

Corollary 3.2.19. LP has a finite product preserving Fop Action.

Proof. Follows by building the action • : Fop × LP → LP whereby よ(n) • X , n • X and∏
iよ(ni) •X ,

∏
i(n •X).

Finally, by definition of the Ctx0 action • : Ctx0 × LP → LP , we already know it is consistent
with all the non-branching structural morphisms identified by K. We now show that its canonical
extension into the Fop action is additionally consistent with the branching structural morphisms
identified by K.
Proposition 3.2.20. The canonical functor K : Fop → LP strictly preserves Fop actions.

Proof. In Fop the action • : Fop × Fop → Fop is given by Day’s convolution ⊗Day. It thus suffices
to show that

K(
∏
i

よ(mi) •
∏
j

よ(nj)) = (
∏
i

よ(mi)) •K(
∏
j

よ(nj))

which holds simply by definition of K, and because • : Fop × LP → LP preserves products:

LHS = K(
∏
i,j

よ(mi + nj)) = (mi + nj)i,j

=
∏
i

((mi + nj)j) =
∏
i

(よ(mi) •K(
∏
j

よ(nj))) = RHS

3. Sums and Tensors of Parameterised Algebraic Theories 55

PATs generate Lawvere Theories With all the facts above, we can now conclude with the
following theorem:
Theorem 3.2.21. For any presentation P , LP is an [Ctx0,Set]-enriched, FinProd doctrine
Lawvere theory in the sense of definition 3.2.2.

Proof. Follows from definition 3.2.7, lemma 3.2.9, corollary 3.2.12, corollary 3.2.12 and proposi-
tion 3.2.20.

Additionally, direct from lemma 3.2.13 and theorem 3.2.21 we can also get that the models
coincide as follows:
Corollary 3.2.22. Let P be a presentation, then models of P in C coincide with models of LP
in C, for any C with Fop actions.

3.3 Sums and Tensors of presented theories

This section concerns the explicit construction of the standard combinations of algebraic theories
– the sum and the tensor – in terms of our framework of PATs. We will first generalise the
action • to allow for expressing morphisms f • X, where f is not necessarily structural. By
doing so, we generalise • into a premonoidal product �. Then, we use this structure to define
the sums and tensors of presented enriched Lawvere theories.

3.3.1 A premonoidal product from the action and explicit character-
isation

Proposition 3.3.1. Let L be a [Ctx0,Set]-enriched Lawvere theory in the sense of defini-
tion 3.2.2. Then we have that

X •K(Y) ∼= Y •K(X)

for any X,Y ∈ Fop, natural in both X and Y .

Proof.

LHS = K(X • Y) (K strictly preserves actions)

= K(X ⊗Day Y) (definition)
K(σX,Y)∼= K(Y ⊗Day X) (proposition 2.1.21)

= RHS (analogous reasoning).

56 3.3. Sums and Tensors of presented theories

Proposition 3.3.2. Let L be a [Ctx0,Set]-enriched Lawvere theory in the sense of defi-
nition 3.2.2. Then the action • : Fop × L → L extends to an object and morphism map
� : L × L → L such that there are functors X o − mapping Y to X � Y and − nX mapping
Y to Y �X. We note o and n as � when unambiguous.

Proof. Knowing that K : Fop → L is identity-on-objects, we can define K(X) � K(Y) ,

X •K(Y), and get directly from proposition 3.3.1 that K(X) �K(Y) ∼= K(Y) �K(X).

Then, functoriality of X�− follows from that of K(X) •−. For −�K(X), we define f �K(X)
by its transpose and functoriality follows.

K(A) �K(X) K(B) �K(X)

K(X) �K(A) K(X) �K(B)

f�K(X)

∼=

K(X)�f

∼=

Note that this definition is the unique one making the isomorphism natural.

This binoidal product does indeed generalise the action •. In fact, we can recover the
bifunctoriality squares of • by considering the central morphisms of L:
Proposition 3.3.3 (Structural morphisms are central morphisms of L). In the binoidal category
(L,�), for any f ∈ Fop, K(f) is a central morphism.

Proof. Easy to show one side by bifunctoriality of the action functor •, and the other side
follows from symmetry (proposition 3.3.1), which is inherited from the symmetry of the Day
convolution ⊗Day.

This binoidal product � happens to additionally be premonoidal:
Proposition 3.3.4. � is a symmetric premonoidal product on L with unit I = K(よ(0))

Proof. Proposition 3.3.2 shows that (L,�) is binoidal. It now suffices to show that it is
premonoidal with respect to I. Then, we can define the symmetry as σKX,KY , K(σX,Y) by
proposition 3.3.1, which conveniently is natural by definition in proposition 3.3.2.

We devise the associators and unitors as follows as directly following from those in Fop:
αKA,KB,KC , K(αA,B,C), λKA , K(λA) and ρKA , K(ρA). They are obviously central
isomorphisms (proposition 3.3.3) and satisfy the pentagon and triangle equations by functoriality
of K, and because Fop is a monoidal category. Thus, it suffices to convince oneself that each of
these morphisms is natural.

To do so, we start by remarking that for any such naturality square, if the morphism f which
varies the index object always appears on the right, then everything follows from the definition

3. Sums and Tensors of Parameterised Algebraic Theories 57

of the action. One example could be the following square, showing that αKX,KY,KZ is indeed
natural in KZ.

(KX �KY) �KZ KX � (KY �KZ)

(KX �KY) �KZ ′ KX � (KY �KZ ′)

α

(KX�KY)�f KX�(KY�f)

α

Indeed, we know that

(KX �KY) � f = K(X • Y) � f = (X • Y) • f = (X ⊗Day Y) • f ∼= X • (Y • f)

and that

KX � (KY � f) = X • (Y • f).

Moreover, the action • : Fop × Fop → Fop of Fop on Fop is defined by ⊗Day, meaning that the
isomorphism µA,B,X : A ⊗Day (B ⊗Day X) ∼= (A ⊗Day B) ⊗Day X is defined by α−1. Thus, the
diagram commutes.

For other naturality squares where f is not on the right most side, we can just use symmetry to
send it to the right most side and reason with that.

Now, we prove some simple and useful properties.
Lemma 3.3.5. � preserves products on both arguments

Proof. Follows from the definition of • and symmetry.

Lemma 3.3.6. K : Fop → L is strong symmetric premonoidal.

Proof.

K(X ⊗Day Y) = K(X • Y) = X •K(Y) = K(X) �K(Y)

Moreover it is symmetric because symmetry is defined directly as σKX,KY = K(σX,Y)

Lemma 3.3.7. If a functor F : L → L′ preserves the action, then F preserves the premonoidal
product.

Proof.

F (K(X) �K(Y)) = F (X •K(Y)) = X • F (K(Y)) = X •K ′(Y) = K ′(X) �K ′(Y)

58 3.3. Sums and Tensors of presented theories

3.3.2 Translation of Sequencing and Premonoidality

The reason why � has to be premonoidal (and not monoidal) becomes clear when considering re-
mark 3.2.3: � is premonoidal because the bifunctoriality condition corresponds to commutativity
of terms, which does not always hold. To make this explicit, we formulate the correspondences
between syntactic sequencing defined in definition 3.2.14 and the premonoidal product.
Theorem 3.3.8 (Translation of sequencing). Let P be a presentation and LP be its corresponding
Lawvere theory. Let Γ | ∆ ` t and Γ′ | ∆′ ` u be terms in P . Then the morphism JΓ×Γ′ | ∆,∆′ `
to uK is exactly:

JΓ × Γ′K = JΓK � JΓ′K JΓK � J∆′K J∆K � J∆′K =よ(∆ + ∆′)JΓK�u t�J∆′K

Proof. First, it is easy to see that JΓ × Γ′K = JΓK � JΓ′K and J∆K � J∆′K =よ(∆ + ∆′) hold by
definition. For the rest, we proceed by double rule induction over t and u. Note that to avoid
cluttering, we drop the J·K notation when there is no ambiguity.

Case (op) on t:

We know that Γ′ | ∆′ ` u and
Γ | ∆, ~mi ` ti

Γ | ∆, ~p ` op(~p, (~mi. ti))
We are also assuming with (IH) that Γ×Γ′ | ∆, ~mi,∆′ ` ti;u is such that the following commutes:

Γ � Γ′ よ(∆ +mi) �よ(∆′)

Γ �よ(∆′)

ti;u

Γ�u
ti�よ(∆′)

where the J·K has been omitted to avoid cluttered notations.

We wish to show that the following commutes:

Γ � Γ′ Γ �よ(∆′) ∏
iよ(∆ +mi) �よ(∆′)

Γ �よ(∆′) よ(∆ + p+ ∆′)

Γ�u

Γ�u

〈ti〉i�よ(∆′)

= (I) よ(∆)�op�よ(∆′)

t�よ(∆′)

where the upper path corresponds to the typing of t;u = op(~p, (~mi.ti;u)i), and the lower path
is the target. This does indeed commute because (I) commutes by left functoriality of � and by
definition of the morphisms in the syntactic category.

Case (var) on t, (op) on u:

3. Sums and Tensors of Parameterised Algebraic Theories 59

We know that

(xi : mi)i | a1...ami ` x(a1...ami)
Γ′ | ∆′, ~nj ` uj

Γ′ | ∆′, ~q ` op(~q, (~nj. uj))

And by (IH) we know that (xi : mi)i × Γ′ | ~a,∆′, ~nj ` xi(~a);uj the following commutes for all j:

∏
iよ(mi) � Γ′ よ(mi) �よ(∆′) �よ(nj)

∏
iよ(mi) �よ(∆′) �よ(nj)

x(~a);uj

∏
i
よ(mi)�uj

πi�よ(∆′)�よ(nj)

We wish to prove that

∏
iよ(mi) � Γ′ ∏

iよ(mi) �∏
j[よ(∆′) �よ(nj)]

よ(mi) �∏
j[よ(∆′) �よ(nj)]

∏
iよ(mi) �よ(∆′) �よ(q) よ(mi) �よ(∆′) �よ(q)

∏
i
よ(mi)�〈uj〉j

∏
i
よ(mi)�u

πi�
∏
j
[よ(∆′)�よ(nj)]∏

i
よ(mi)�op

よ(mi)�op

πi�よ(∆′)�q

(I)

(II)

where the upper path corresponds to the interpretation of the typing of t;u = op(~q, (~nj.x(a1...ami);uj)j)
and the bottom path is the target. Here, (I) simply follows from the definition of the morphisms
in the syntactic category and the right functoriality of �, and (II) follows from the naturality of
πi • − (because πi ∈ Fop(∏iよ(mi),mi)), or alternatively from lemma 3.2.17.

Case (var) on t, (var) on u:

We need only show:

∏
iよ(mi) �∏

jよ(nj)

∏
iよ(mi) �よ(nj∗) よ(mi∗) �よ(nj∗)

∏
i
よ(mi)�πj∗

xy(~mi∗ ,~nj∗)

πi∗ �よ(nj∗)

which is follows from the definition.

Case (struct) on t: We assume that Γ′ | ∆′ ` u and

Γ | ∆ ` t

Γ | ∆ι ` tι

60 3.3. Sums and Tensors of presented theories

By (IH) we assume:

Γ � Γ′ Γ �よ(∆′)

よ(∆) �よ(∆′)

Γ�u

t;u t�よ(∆′)

We wish to prove that

Γ � Γ′ Γ �よ(∆′) よ(∆) �よ(∆′)

Γ �よ(∆′) よ(∆ι) �よ(∆′)

Γ�u

Γ�u

t�よ(∆′)

= (I) ι�よ(∆′)

tι�よ(∆′)

where again, the upper path is the interpretation of tι;u and the lower path is the target. Here,
(I) commutes because of the definition of the morphisms in the syntactic category and of the
left functoriality of �.

Case (struct) on u: We assume that Γ | ∆ ` t and

Γ′ | ∆′ ` u

Γ′ | ∆′
ι ` uι

By (IH) we assume:

Γ � Γ′ Γ �よ(∆′)

よ(∆) �よ(∆′)

Γ�u

t;u t�よ(∆′)

We wish to show that

Γ � Γ′ Γ �よ(∆′) よ(∆) �よ(∆′)

Γ �よ(∆′
ι) よ(∆) �よ(∆′

ι)

Γ�u

Γ�uι

t�よ(∆′)

Γ�ι
(II) よ(∆)�ι

t�よ(∆′
ι)

(I)

This does indeed commute because (I) commutes by definition of the morphisms in the syntactic
category and the right functoriality of �; (II) commutes because of lemma 3.2.17 and by taking
the square through the symmetry of the premonoidal product (proposition 3.3.1).

This explicit translation of sequencing directly shows that syntactic commutation is equivalent
to a bifunctoriality square of �.

3. Sums and Tensors of Parameterised Algebraic Theories 61

Corollary 3.3.9 (Commutation). Γ × Γ′ | ∆,∆′ ` tou = un t in P if and only if the following
commutes in LP .

Γ � Γ′ p� Γ′

Γ � q p� q

t�Γ′

Γ�u p�u

t�Γ′

Proof. Follows directly from theorem 3.3.8.

3.3.3 Sums

Using the results from the previous sections, we are now ready to define the sum and tensor of
presentations.
Definition 3.3.10 (Sum of presentations). Let P and P ′ be two PATs. The sum P + P ′ is
the PAT with operations O t O′, and containing all axioms from P and P ′, with no additional
axiom.
Theorem 3.3.11 (Sum of presented theories is sum of presentations). LP+P ′ is the coproduct
of LP and LP ′.

Proof. First, there are canonical functors inl : LP → LP+P ′ and inr : LP ′ → LP+P ′ directly
embedding terms in P and P ′ to terms in P + P ′ respectively.

We need only show the universal property:

L(P) L(P + P ′) L(P ′)

L′

inl

F
H

inr

G

Assuming we have functors F and G into L′ as shown above, we can simply construct H
as identity on objects, product preserving and action preserving, and the following map on
morphisms:

H(〈tj〉j :
∏
i

よ(mi) →
∏
j

よ(nj)) = 〈H(tj)〉j

and

H(Γ | ∆ ` t) =

(よ(∆) � F (op)) ◦ 〈H(tk)〉k if t = op(~p, (~mk.tk)k)
(よ(∆) �G(op′)) ◦ 〈H(t`)〉` if t = op′(~q, (~n`.t`)`)
K ′(ι) ◦H(t′) if t = t′ι under (struct)
πk if t = (xk : mk)k | ~a ` xk(~a)

where K ′ : Fop → L′ is the functor associated with L′, and op and op′ stand for operations
from P and P ′, respectively.

62 3.3. Sums and Tensors of presented theories

Uniqueness is easy to check: Let H ′ : L(P + P ′) → L′, then H ′ is identity-on-objects and
preserves products (follows from the definition). Thus it suffices to show that H and H ′ coincide
on individual terms Γ | ∆ ` t, which we can easily do by rule induction:

Case (op) with op from P :

H ′(Γ | ∆, ~p ` op(~p, (~mk. tk)k))

= H ′((よ(∆) � op) ◦ 〈Γ | ∆, ~mk ` tk〉k) (def of morphisms in definition 3.2.7)

= H ′((よ(∆) � op)) ◦H ′(〈Γ | ∆, ~mk ` tk〉k) (Functoriality of H ′)

= H ′((よ(∆) � op)) ◦ 〈H ′(Γ | ∆, ~mk ` tk)〉k (Product preservation)

=よ(∆) �H ′(op) ◦ 〈H ′(Γ | ∆, ~mk ` tk)〉k (lemma 3.3.7)

=よ(∆) � F (op) ◦ 〈H ′(Γ | ∆, ~mk ` tk)〉k (Coproduct property)

= H(Γ | ∆, ~p ` op(~p, (~mk. tk)k)) (By (IH) and def of H)

Case (op) with op′ from P ′: analogous.

Case (var): structural morphisms are obviously preserved because the functors H and H ′ both
have to commute with KLP+P ′ and K ′.

Case (struct):

H ′(Γ | ∆ι ` tι) = H ′(KLP+P ′ (ι) ◦ (Γ | ∆ ` t)) (def of morphisms in definition 3.2.7)

= H ′(KLP+P ′ (ι)) ◦H ′(t) (Functoriality)

= K ′(ι) ◦H ′(t) (Because H ′ commutes with the K’s)

= H(tι) (IH)

3.3.4 Tensors

Definition 3.3.12 (Tensor of presentations). Let P and P ′ be two PATs. The sum P ⊗ P ′ is
the PAT with operations O t O′, and containing all axioms from P and P ′, and with additional
axioms making all operation in O commute with those in O′, i.e., for any op : (p | m1...mk)
and op : (q | n1...n`) we have the following equation:

(xi,j : mi + nj)i,j ~a,~b `

op(~a, (~mi. op′(~b, (~nj. xi,j(~mi, ~nj))j))i) = op′(~b, (~nj. op(~a, (~mi. xi,j(~mi, ~nj))i))j)

Lemma 3.3.13. Let t be a term in P , u be in P ′, then in P ⊗ P ′ we have that t;u = u; t.

3. Sums and Tensors of Parameterised Algebraic Theories 63

Proof. Firstly, by rule induction, we can establish that for any term t of P and any op of P ′

we have that t; op = op; t, and likewise that for any u of P ′ and any op of P we have that
u; op = op;u.

Then, the lemma can be shown by rule induction on both t and u, using these facts as well as
lemma 3.2.17.

Definition 3.3.14. Let L and L′ be enriched Lawvere theories in the sense of definition 3.2.2.
Their tensor, L ⊗ L′, if it exists, is the Lawvere theory satisfying the universal property that for
any f : X → Y in L and g : A → B in L′, the following diagram commutes in L′:

X � A X �B

Y � A Y �B

X�g

f�A f�B

Y�g

Theorem 3.3.15 (Tensor of presented theories is the tensor of presentations). LP⊗P ′ is LP ⊗L′
P .

Proof. The proof of universal property is then summarised by the following diagram, which we
shall argue commutes.

LP+P ′

LP LP⊗P ′ LP ′

M

I

[F,G]

inl

`

F
H

inr

r

G

Firstly, it is easy to see by lemma 3.3.13 and corollary 3.3.9 that LP⊗P satisfies the property
given in definition 3.3.14.

Then, we can define ` and r as the canonical embedding functors from LP and LP ′ to LP⊗P ′ .

Now assume we have a diagram F : LP → M and G : LP ′ → M such that the diagram
commutes. Then, there is a functor H : LP⊗P ′ → M such that H ◦ ` = F and H ◦r = G, defined
exactly analogously to that of [F,G]. Therefore, by definition, H satisfies that H ◦ I = [F,G],
where I is the canonical identity on object and full functor in LP+P ′ → LP⊗P ′ .

Let H ′ : LP⊗P ′ → M such that H ′ ◦ ` = F and H ′ ◦ r = G, it follows that H ◦ I = H ′ ◦ I by
universal property of LP+P ′ , and thus H = H ′ because I is epic.

4
An Algebraic Theory for Quantum

Communication

This chapter concerns the main object of study of the dissertation: an algebraic theory for
quantum communication. By quantum communication, we really mean quantum I/O, i.e.
outputting and inputting qubits to and from an unknown environment. In this chapter, we
study such programs ‘freely’, in the sense that we start with a complete axiomatisation of
qubit quantum computing (the QUANTUM theory from [67]), and simply adjoin two operations
for sending and receiving qubits respectively (the I/O theory). Concretely, we choose to work
with I/O ⊗ QUANTUM, a tensor of the two theories in the sense of chapter 3, and argue for
its merits (section 4.1). Then, in section 4.2, we give a non-trivial operational semantics for
quantum communication. We then use it in section 4.3 to define a suitable notion of program
equivalence and show that it is a model of I/O ⊗ QUANTUM (theorem 4.3.25). This allows us to
demonstrate that not only does our theory not collapse into triviality (unlike the Eckmann-Hilton
result cf. proposition 4.2.1), it actually soundly axiomatises a reasonable model of quantum
communication.

4.1 The Theory

4.1.1 Starting point: algebraic theory for qubit quantum computing

Staton [67] presented in his work an algebraic theory for qubit quantum computing with
programming constructs stemming from the quantum circuit model. Note that the parameters
here are treated linearly, conformably to the no-cloning theorem of quantum theory, which
means that we are in the Bij system as per the notation introduced in chapter 3.

65

66 4.1. The Theory

applyX(a, a.measure(a, x, y)) = measure(a, y, x) (A)
measure(a, applyU(~b,~b.x(~b), applyV (~b,~b.y(~b))))
= applyD(U,V)((a,~b), (a,~b).measure(a, x(~b), y(~b))) (B)
applyU(~a,~a.discardn(~a, x)) = discardn(~a, x) (C)
new(a.measure(a, x, y)) = x (D)
new(a.applyD(U,V)((a,~b), (a,~b).x(a,~b))) = applyU(~b,~b.new(a.x(a,~b))) (E)
applyswap((a, b), (a, b).x(a, b)) = x(b, a) (F)
applyI(~a,~a.x(~a)) = x(~a) (G)
applyV U(~a,~a.x(~a)) = applyU(~a,~a.applyV (~a,~a.x(~a))) (H)
applyU⊗V ((~a,~b), (~a,~b).x(~a,~b)) = applyU(~a,~a.applyV (~b,~b.x(~a,~b))) (I)
measure(a,measure(b, u, v),measure(b, x, y))
= measure(b,measure(a, u, x),measure(a, v, y)) (J)
new(a.new(b.x(a, b))) = new(b.new(a.x(a, b))) (K)
new(a.measure(b, x(a), y(a))) = measure(b, new(a.x(a)), new(a, y(a))) (L)

Figure 4.1: Algebraic Theory for Qubit Quantum Computing in [67]

Definition 4.1.1 (Algebraic Theory for Quantum Computing, Section 3 [67]). QUANTUM is a
Bij PAT. The signature is given by operations new : (0 | 1), measure : (1 | 0, 0) and for every
2n × 2n unitary U , an operation applyU : (n | n). Equations are given in fig. 4.1, where X is the
X gate, D(U, V) is the matrix

(
U 0
0 V

)
, and discardn is defined as follows for n ∈ N:

discard0(−, t) = t

discardn+1((a,~b), t) = measure(a, discardn(~b, t), discardn(~b, t))

This theory admits the complex numbers C as a fully complete model in CPU in the following
sense:
Definition 4.1.2 (Def 7, [67]). A model X in a category is fully complete if for all contexts
((xi : mi)i | a1...ap),

• for every morphism f : ∏i(mi • X) → p • X there is a term (xi : mi)i | a1...ap ` t such
that JtK = f ;

• for all terms (xi : mi)i | a1...ap ` t, u if JtK = JuK then t = u is derivable.
Theorem 4.1.3 (Thm 11, [67]). The complex numbers C ∈ CPU form a fully complete model,
where the Bij action is given by m •X ,M2m(X).

4. An Algebraic Theory for Quantum Communication 67

4.1.2 The theory to be studied: I/O ⊗ QUANTUM

We now proceed to define the actual theory to be studied.

We model communication using operations in : (0 | 1) and out : (1 | 0), where one is able to
send and receive qubits. This can be modelled as the theory with these two operations and no
equations, as per the following definition.
Definition 4.1.4 (Algebraic theory for communications (e.g. [55] example 2.2)). I/O is the
theory with operations in and out and no equations.

The question we wish to ask then becomes: how should we combine I/O and QUANTUM? The
section title spoils the answer: we used the tensor (definition 3.3.12, definition 3.3.14). Let us
try to understand this decision in more detail.

The most flexible construction is the sum (definition 3.3.10): combining the two theories together
without adding any equations. In fact, this is the standard combination suggested by Hyland,
Plotkin and Power [31]. However, they do so in the context of classical, interactive I/O – like
user inputs in a classical program. Unfortunately, the sum is insufficient for modelling quantum
phenomena1.

Consider the following equation:

new(q.applyH(q, q.new(p.applyCX((q, p), (q, p).measure(q, out(p, x), out(p, x))))))

= new(q.applyH(q, q.measure(q, new(p.out(p, x), new(p.applyX(p, p.out(p, x))))))) (4.1)

where H is the Hadamard gate, X is the X gate, and CX is the controlled X gate with
CX = D(id, X), more widely known as the CNOT gate.

This equation is a slight twist to a well-known fact in quantum computing: preparing an
entangled pair of qubits, sending one out and then discarding one of them should be equivalent
to performing a fair coin toss and then sending the result out as a qubit. This is counterintuitive
– the measurement from the discarding operation has been ‘pulled back in time’– and makes
the axiomatisation of any notion of communication subtle.

For this equality to hold, we need the following axiom, which only holds in I/O ⊗ QUANTUM
and not I/O + QUANTUM.

measure(q, out(p, x), out(p, y)) = out(p,measure(q, x, y)) (4.2)

1or for the category theorist, it is insufficient to model the structure of a symmetric compact closed category

68 4.1. The Theory

new(a.in(b.x(a, b))) = in(b.new(a.x(a, b))) (U)
applyU(~a, in(b.x(~a, b))) = in(b.applyU(~a), x(~a, b)) (V)
measure(a, in(b.x(b)), in(b.y(b))) = in(b.measure(a, x(b), y(b))) (W)
new(a.out(b, x(a))) = out(b, new(a.x(a))) (X)
applyU(~a, out(b, x(~a))) = out(b, applyU(~a), x(~a)) (Y)
measure(a, out(b, x), out(b, y)) = out(b,measure(a, x, y)) (Z)

Figure 4.2: Commutativity equations in I/O ⊗ QUANTUM

The proof for eq. (4.1) would then go as follows:

measure(q, new(p.out(p, x)), new(p.applyX(p, p.out(p, x))))

= new(p.measure(q, applyid(p, p.out(p, x)), new(p.applyX(p, p.out(p, x)))))

= new(p.applyCX(p, p.measure(q, out(p, x), out(p, x))))

= new(p.applyCX(p, p.measure(q, out(p, x), out(p, x))))
eq. (4.2)= new(p.applyCX(p, p.out(p, discard(q, x))))

which implies that LHS = RHS.

In fact, in general, we would want all of QUANTUM’s operations to commute with inputs and
outputs. Not only does this model quantum phenomena better, but it also makes intuitive sense:
local operations should commute with unrelated I/O. Therefore, we add the equations shown in
fig. 4.2, which, by definition 3.3.12, gives us exactly the theory I/O ⊗ QUANTUM.

Are there any more equations to add?

Both I/O and QUANTUM are standard theories modelling communication and quantum
computing respectively. However, between I/O and QUANTUM operations, we do need to
ask ourselves whether we want to allow some notion of deferred measurement (e.g. §4.4 of [42]
or [46]). Deferred measurement refers to the fact that a measurement can always be deferred in
a quantum process. In particular, classically controlled processes depending on the result of a
measurement can be replaced with a quantumly controlled process followed by a measurement,
as embodied in axiom (B):

measure(a, applyU(~b,~b.x(~b), applyV (~b,~b.y(~b))))

= applyD(U,V)((a,~b), (a,~b).measure(a, x(~b), y(~b)))

The question we have to ask ourselves is whether there is a coherent way of deferring measure-
ments through (possibly classically controlled) I/O operations.

4. An Algebraic Theory for Quantum Communication 69

Consider the term
measure(q, in(p.x(p)), y)

which measures a qubit q, and inputs a new qubit p only when the measurement outcome is |0〉.

Should we be able to defer this measurement?

The naive way of deferring would be allowing a rule like

measure(q, in(p.x(p)), y) = in(measure(q, x(p), discard(p, y)))

which is problematic firstly because on the RHS, discarding introduces decoherence, but more
importantly because it is problematic for an input to be done regardless of the measurement
outcome. It then follows that

in(p.measure(q, x(p), y(p))) = measure(q, in(p, x(p)), in(p, y(p)))

= in(p,measure(q, x(p), discard(p, in(p, y(p)))))

which is clearly nonsense.

A better way would be to have a notion of quantum-controlled input cin(q, (q, p).t) (which, let’s
say, does the input if q is 0), and equation

measure(q, in(p.x(p)), y) = cin(q, (q, p).measure(q, x(p), discard(p, y)))

but we make the design decision not to allow this. As mentioned in the related works section,
quantum controlled quantum communication [35] is an active area of research, and we choose to
leave its development as a programming language primitive to future work.

4.2 An Operational Semantics for I/O ⊗ QUANTUM

Defining an algebraic theory is not sufficient to claim that it is well-formed. Indeed, the following
famous result shows that if a theory has two unital binary operations which commute with each
other, then those two operations coincide and are additionally associative and commutative. In
other words, the two binary operations ‘collapse’ into one.
Proposition 4.2.1 (Eckmann-Hilton argument (e.g.[47])). Let L be the (unparameterised)
algebraic theory of a unital magma, i.e. a theory with operations µ : 2 and η : 0 such that the
following unital law holds:

µ(η, x) = µ(x, η) = x.

Then, in L ⊗ L, the two magma structures collapse into a single structure satisfying the laws of
a commutative monoid.

70 4.2. An Operational Semantics for I/O ⊗ QUANTUM

Proof sketch. Let us call the multiplication and unit of the first theory � and 1�, and those of
the second theory ⊗ and 1⊗. We will demonstrate that the two structures (⊗, 1⊗) and (�, 1�)
coincide and will, in fact, be commutative and associative. To do so, recall that the tensor
product implies that the following interchange law holds:

(x⊗ y) � (z ⊗ w) = (x� z) ⊗ (y � w)

We first observe that the units coincide:

1� = 1� � 1� = (1⊗ ⊗ 1�) � (1� ⊗ 1⊗) interchange= (1⊗ � 1�) ⊗ (1� � 1⊗) = 1⊗ ⊗ 1⊗ = 1⊗

Then, we can show that the two operators coincide too:

x� y = (x⊗ 1) � (1 ⊗ y) interchange= (x� 1) ⊗ (1 � y) = x⊗ y

and that it is commutative:

x� y = (1 ⊗ x) � (y ⊗ 1) interchange= = (1 � y) ⊗ (x� 1) = y ⊗ x

Finally, associativity also holds:

(x⊗ y) ⊗ z = (x⊗ y) ⊗ (1 ⊗ z) interchange= (x⊗ 1) ⊗ (y ⊗ z) = x⊗ (y ⊗ z)

To show that operations in I/O ⊗ QUANTUM do not similarly collapse, we need to exhibit a
non-trivial model. In this section, we make the first steps by giving an ad hoc operational
semantics to the signature of I/O ⊗ QUANTUM, which corresponds to the ‘semantics we had in
mind’ when defining our algebraic theory of study.

4.2.1 Syntax and Type System

The syntax of our language is exactly that of parameterised algebraic theories in section 3.1.1,
with operations as in definition 4.1.1. For our convenience, however, we redefine the type system.
Definition 4.2.2 (Type System). The typing judgement Γ | ∆ ` t is defined just as defini-
tion 3.1.4 and the typing relation is the smallest satisfying the rules in fig. 4.3.
Lemma 4.2.3 (Admissibility of (struct) rule). The (struct) rule of Bij shown below holds for
the typing relation of definition 4.2.2.

Γ | ∆ ` t
(exch)

Γ | σ(∆) ` t

4. An Algebraic Theory for Quantum Communication 71

(var)
Γ, x : p,Γ′ | aσ(1)...aσ(p) ` x(a1...ap)

Γ | ∆, q ` t
(in)

Γ | ∆ ` in(q.t)
Γ | ∆,∆′ ` t

(out)
Γ | ∆, q,∆′ ` out(q, t)

Γ | ∆, q ` t
(new)

Γ | ∆ ` new(q.t)

Γ | σ(∆,~b) ` t
(apply)

Γ | σ(∆,~a) ` applyU(~a,~b.t)

(Γ | ∆,∆′ ` ti)i=0,1 (measure)
Γ | ∆, q,∆′ ` measure(q, t0, t1)

Figure 4.3: Alternative typing rules for I/O⊗QUANTUM, where σ is taken as an arbitrary permutation.

Proof. By rule induction over Γ | ∆ ` t.

Case (var): trivial. Both Γ | ∆ ` x(∆) and Γ | σ(∆) ` x(∆) hold directly by (var).

Case (out): assuming that
Γ | ∆,∆′ ` t (4.3)

Γ | ∆, q,∆′ ` out(q, t) (4.4)

we want to show that Γ | σ(∆, q,∆′) ` out(q, t).

Let σ(∆, q,∆′) = Ω, q,Ω′. Then, from eq. (4.3) and (IH) we get

Γ | Ω,Ω′ ` t (4.5)

which by (out) proves
Γ | Ω, q,Ω′ ` out(q, t) (4.6)

as required.

Case (measure): analogous.

Case (in): assume
Γ | ∆, q ` t (4.7)

Γ | ∆ ` in(q.t) (4.8)

Then by eq. (4.7) and (IH) it follows that

Γ | σ(∆), q ` t (4.9)

from which
Γ | σ(∆) ` in(q.t) (4.10)

follows by (in).

72 4.2. An Operational Semantics for I/O ⊗ QUANTUM

Case (new): analogous.

Case (apply): assume that
Γ | σ′(∆, b1...bn) ` t (4.11)

Γ | σ′(∆, a1...an) ` applyU(~a,~b.t) (4.12)

where σ′ is an arbitrary permutation.

By eq. (4.11) and (IH) it follows that

Γ | σ′′(∆, b1...bn) ` t (4.13)

where σ′′ = σ ◦ σ′. Thus it follows that

Γ | σ′′(∆, a1...an) ` applyU(~a,~b.t) (4.14)

Theorem 4.2.4 (Equivalence with definition 3.1.4). The typing relation defined in defini-
tion 4.2.2 is equivalent to that of definition 3.1.4 instantiated with the signature of I/O ⊗
QUANTUM.

Proof. On the one hand, every rule in definition 4.2.2 can be derived by definition 3.1.4. On
the other hand, every rule in definition 3.1.4, including (struct) (cf. lemma 4.2.3), is derivable
from definition 4.2.2. Thus, these two relations are the same.

4.2.2 Operational Semantics

4.2.2.1 A quantum stream

Classically, communication channels are operationally modelled by input/output streams. Then,
one can imagine configurations of the machine to look like

〈Σ, stream_state, c〉

where c is the program and Σ is the store.

In this section, we wish to construct a quantum version of such a stream. The challenge is
threefold:

1. The existence of quantum effects means that we can’t, in general, separate the state of
the store and that of the steam; we need a global state. We can then imagine a state of
the form:

ρ

s in h

4. An Algebraic Theory for Quantum Communication 73

where s is the state accessible to the program (which we shall call ‘program state’), h is
the hidden stream state (the ‘hidden state’) and in : qbit is the next input qubit. (Note
that here the string diagram would be taken in CP.)

2. The stream must be able to evolve with a general CPTP map every time an input or an
output is performed.

3. Apart from the possible information sharing with the program state due to entanglement,
the evolution of the hidden should only depend on whether an input or an output was
performed by the program. The program’s branching information should not affect the
stream. In other words, if, after a measurement, the program only performs an input in
one branch, the state of the stream should not be affected in the other branch.

To fulfil these requirements, we define the stream as follows.
Definition 4.2.5 (Quantum stream). Let X0 ∈ Ob CP. A quantum stream in Stream(X0)
consists of

• A map q : {in, out}∗ → Ob CP such that the initial state ε satisfies q(ε) = X0;

• For every σ ∈ {in, out}∗, a morphism T (σ, in) ∈ CPTP(q(σ),qbit ⊗ q(σ + in)), and a
morphism T (σ, out) ∈ CPTP(qbit ⊗ q(σ) ⊗ qbit,qbit ⊗ q(σ + out))

Intuitively, the stream is a state machine, where each state is uniquely determined by its trace
σ ∈ {in, out}∗. Every state σ has a set hidden state shape q(σ) ∈ Ob (CP) and two quantum
maps, T (σ, in) and T (σ, out) shown below, performed when the program ask for an input or
gives an output respectively.

h : q(σ)

in h : q(σ + in)

T (σ, in)

in out
h : q(σ)

in h : q(σ + out)

T (σ, out)

Indeed, T (σ, in) takes the previous hidden state and gives the new hidden state and provides a
new input qubit; T (σ, out) takes the previous hidden state, the previous unused input, and the
new qubit output by the program to give a new hidden state and input qubit.

74 4.2. An Operational Semantics for I/O ⊗ QUANTUM

4.2.2.2 Transition system

We now have all the tools to define the operational semantics.
Definition 4.2.6 (Configuration). A configuration is a tuple 〈ρ, σ, c〉 where

• ρ is a normalised state in CP of the form I → S⊗qbit⊗H where S = qbit⊗n = M2n(C)
is the shape of the current state (which we restrict to a tensor of qubits) and H ∈ Ob CP
is the shape of the hidden state, with no restrictions.

• An (implicit) list ∆ρ of n labels (qubit names) for each qubit in the program state of ρ.

• σ ∈ {in, out}∗ is the current trace

• and c is a program.

We denote the set of all configurations by Config.
Convention 4.2.7 (Names on string diagrams). When drawing string diagrams, we label each
wire by the corresponding qubit name. We also use the letter s for a general program state wire,
in for the input wire and h for the hidden state wire.
Convention 4.2.8. For any state ρ we write ρ̃ to denote the underlying morphism in the CP
category, forgetting the names.
Definition 4.2.9 (Operational Semantics). Let t ∈ Stream(X0) be an arbitrary stream. The
small-step operational semantics is given by a transition relation →t ⊆ Config × (0, 1]×Config
such that either φ does not reduce, or ∑φ→t

pφ
′ p = 1.

We define the relation as the least one satisfying the rules in fig. 4.4.

Perhaps it is worth noting that in the (apply) case of the operational semantics, we choose an
arbitrary permutation π that permutes all the required qubits to the right in the right order
and leaves the rest of the state in another permutation π′′. It might seem like there are multiple
possible choices of π, but in reality, regardless of the choice we make, the resulting state will
mathematically be the same. Therefore, that transition is indeed deterministic and well-formed.
Remark 4.2.10 (Probabilistic interpretation). Equivalently we can define transition as a
probability distribution D→t : Config ⇀ D(Config) (where D(Config) is the set of discrete
probability distributions over Config). As a notational convenience, we write

• φ9 meaning that φ does not reduce, i.e. D→t(φ) ↑

• Pr(φ →t φ′) denotes PrΦ′∼D→t (φ)(Φ′ = φ′), defined when D→t(φ) ↓.
Convention 4.2.11 (skip). We write 〈ρ, σ, skipx〉 to mean 〈ρ, σ, x(∆ρ)〉.
Proposition 4.2.12 (Well-definedness of the operational semantics). Let φ ∈ Config and
t ∈ Stream(X0) for some X0 ∈ Ob CP. Then, either φ 9t or ∑φ→t

pφ
′ p = 1. Furthermore, if

φ →t
p φ

′ = 〈ρ′, σ′, c′〉, then tr(ρ′) = 1.

4. An Algebraic Theory for Quantum Communication 75

〈
ρ

s in h

, σ, new(q.c)
〉

→1

〈
ρ

s in h

0

q

, σ, c

〉
(new)

〈
ρ

s in h

, σ, applyU(~a,~b.c)
〉

→1

〈
ρ

s

in h

π

U

π−1

π′′(∆)

~a

~b

s

, σ, c

〉
(apply)

where π−1(π′′(∆),~a) = π′(∆,~a)
assuming that s is originally of the form π′(∆,~a).

〈
ρ

s in hq s′

, σ,measure(q, c0, c1)
〉

→pi

〈
ρ

s

in h

q s′

i

1
pi

, σ, ci

〉
(measure)

if pi > 0, where i = 0, 1; pi = tr

 ρ

i

〈
ρ

s in h

, σ, in(q.c)
〉

→1

〈
ρ

s
in h

new s

T (σ, in)
in h

, σ + in, c
〉

(in)

〈
ρ

s in hq s′

, σ, out(q, c)
〉

→1

〈
ρ

s
in h

q

s′

hin

T (σ, out)

, σ + out, c
〉

(out)

〈
ρ

π(~a) in h

, σ, x(~a)
〉

→1

〈
ρ

π(~a)

in h

π−1
~a

, σ, x(~a)
〉

(skip)

Figure 4.4: Operational semantics for quantum communication

76 4.2. An Operational Semantics for I/O ⊗ QUANTUM

Proof. For convenience, we write

φi = ρ

i
.

For the first statement, we need only check the (measure) and (apply) cases. The (measure)
case follows because

p0 + p1 =
∑
i=0,1

tr (φi) = 1

by definition of traces. The (apply) case follows because the permutation π is taken as the
unique one moving the qubits in ~a to the right and reorders them, leaving the qubits in ∆ in
the same order as in s.

For the second statement, at every rule but (measure), the map applied to the state is a
morphism in CPTP. in the (measure) case, assuming the trace on the left was 1, the trace of
φi would indeed be pi = tr(φi), and thus 1

pi
φi has trace 1.

4.2.3 Properties

Definition 4.2.13 (State shape). Let ρ : I → S ⊗ qbit ⊗H be a normalised state. We write
ρ :t ∆, σ where t = (q, T) ∈ Stream(X0) is a stream, ∆ is a parameter context and σ ∈ {in, out}∗

is a trace, if

• H = q(σ)

• |∆| = S and ∆ = ∆ρ.

Let Γ | ∆ ` c, X0 ∈ Ob CP, t = (q, T) ∈ Stream(X0), σ ∈ {in, out}∗, ρ :t (∆, σ). Let
φ = 〈ρ, σ, c〉.
Theorem 4.2.14 (Progress). Either φ9 or φ → φ′ for some φ′ ∈ Config.

Proof. By straightforward rule induction on the typing derivation of c, simply because in
every case of the operational semantics, the state ρ on the left-hand side can be set to satisfy
ρ :t (∆, σ).

Theorem 4.2.15 (Type Preservation). If φ →t
p φ

′ = 〈ρ′, σ′, c′〉 then Γ | ∆′ ` c′ and ρ′ :t (∆′, σ′).

Proof. By induction over →t.

Case (skip): Firstly, by inversion, we get that Γ, x : n,Γ′ | π(~a) ` x(~a) which implies (by e.g.
lemma 4.2.3) that Γ, x : n,Γ′ | ~a ` x(~a). Moreover, ρ′ :t (~a, σ) holds very clearly.

Case (new): We know that Γ | ∆ ` new(q.c). By inversion we get Γ | ∆, q ` c. And indeed, we
have that ρ′ :t ((∆, q), σ) by inspection of its shape.

4. An Algebraic Theory for Quantum Communication 77

Case (apply): We know that Γ | π′(∆,~a) ` applyU(~a,~b.c). By inversion we get Γ | π′(∆,~b) ` c.
Moreover, by inspection of ρ′ we get ρ′ :t π′(∆,~b), σ. Indeed, if in the state

ρ′ = ρ
s

in h

π

U

π−1

π′′(∆)

~a

~b

s

we have that s is initially of the shape π′(∆,~a), then the whole operation just replaces all the
a’s with the corresponding b’s, which means that the final s is of the shape π′(∆,~b).

Case (measure): We know that Γ | ∆, q,∆′ ` measure(q, c0, c1). By inversion we get Γ | ∆,∆′ ` ci

for i = 0, 1. Moreover, the final state will look like

ρ′ = ρ

s

in h

q s′

i

1
pi

for any i = 0, 1. Since we know that ρ :t (∆, q,∆′), σ, the shape of the final state will be
ρ′ :t (∆,∆′), σ necessarily.

Case (in): We know that Γ | ∆ ` in(q.c), so by inversion we get Γ | ∆, q ` c. Moreover, given
that the initial state satisfies ρ :t ∆, σ, and by inspection on the shape of the final state

ρ′ = ρ

s
in h

new s

T (σ, in)
in h

we know that new s will be of the shape ∆, q. Moreover, the new hidden state along with the
input will be of the shape qbit ⊗ q(σ+ in), and thus we do indeed have that ρ′ :t (∆, q), (σ+ in).

Case (out): We know that Γ | ∆, q,∆′ ` out(q, c), so by inversion we get that Γ | ∆,∆′ ` c.
Moreover given that ρ :t ∆, σ, and that the final state looks like

ρ′ = ρ

s
in h

q

s′

hin

T (σ, out)

,

we know that the new program state is of the shape ∆,∆′, and moreover, by definition, we
know that the new input and hiddel state will be of the shape qbit ⊗ q(σ+ out) by definition of
the quantum stream.

78 4.3. Program Equivalence

Now that we get type safety, let’s prove termination.
Theorem 4.2.16 (Termination). For Γ | ∆ ` c, φ = 〈ρ, σ, c〉 terminates (reaches some state
φf 9) with probability 1.

Proof. By simple rule induction over the typing derivation. For the base case (the (var) rule),
the (skip) reduction rule applies, after which the configuration does not reduce anymore. For
all the other rules, assuming that the continuations terminate w.p. 1, the probability that the
original term c terminates is also 1 because by progress (theorem 4.2.14), it necessarily steps to
one of the continuations, along with a new state which by type preservation (theorem 4.2.15)
satisfies the premise for the IH. Moreover, because the one-step transition gives a probability
distribution, the resulting probability of terminating is preserved.

With this property, for any well typed term and well formed configuration compatible with it,
we can treat its end states as a probability distribution.

4.3 Program Equivalence

To exhibit a model of our I/O ⊗ QUANTUM theory, we now need to define a notion of program
equivalence which is well-behaved (is a congruence with respect to typing and is compatible
with substitution and α-equivalence) and satisfies our axioms.

4.3.1 Notions of chained reduction

Definition 4.3.1 (Paths). Let φ, φ′ ∈ Config. We write π : φ →∗ φ′ to denote a particular
reduction path from φ to φ′, and we write

Pr(π) ,
∏

i=1...n
Pr(φi−1 → φi)

where φ0 = φ and φn = φ′.
Definition 4.3.2 (Probabilistic reduction). Let φ, φ′ ∈ Config. We write φ ↓tp φ′ iff φ′ 9 and

p =
∑

π:φ→∗φ′
Pr(π)

In other words, p is the probability that a reduction from φ lands on φ′, which we can denote as
Pr(φ →∗ φ′) , p (as per the law of total probabilities).
Lemma 4.3.3 (Induction principle for ↓tp). Let φ ∈ Config. If (φ →qi φ

′
i)i∈J then

φ ↓tp φf ⇐⇒ ∀i ∈ J. φ →qi φ
′ ↓tpi φf

where p = ∑
i∈J qipi.

Proof. Follows directly from the probabilistic interpretation and the law of total probabilities.

4. An Algebraic Theory for Quantum Communication 79

4.3.2 A first notion of program equivalence

A first naive definition of program equivalence is as follows:
Definition 4.3.4 (Probabilistic equivalence). We write

Γ | ∆ ` c1 'pr c2

to mean that Γ | ∆ ` c1, c2, and for all X0 ∈ Ob CP, t = (q, T) ∈ Stream(X0), σ ∈ {in, out}∗

and ρ :t ∆, σ, for all ρf , σf and (x : n) ∈ Γ,

〈ρ, σ, c1〉 ↓tp 〈ρf , σf , skipx〉

iff
〈ρ, σ, c2〉 ↓tp 〈ρf , σf , skipx〉

The issue with this definition is that it unfortunately does not respect α-equivalence. Consider
the α-equivalent terms x : 1 | · ` new(q.x(q)) 'α new(p.x(p)). It is clearly not possible to show
that these two terms are equivalent under 'pr because for any suitable ρ and σ,

〈ρ, σ, new(q.x(q))〉 ↓t1

〈
ρ

in h

0

q

, σ, x(q)
〉

and

〈ρ, σ, new(p.x(p))〉 ↓t1

〈
ρ

in h

0

p

, σ, x(p)
〉

which are different.

One solution could be to define a notion of equivalence which allows different name lists on the
final state ρf , as long as ρ̃f = ρ̃′

f . We get the following notion of equivalence:
Definition 4.3.5 (Probabilistic skip equivalence). We write

Γ | ∆ ` c1 'skip
pr c2

to mean that Γ | ∆ ` c1, c2, and for all X0 ∈ Ob CP, t = (q, T) ∈ Stream(X0), σ ∈ {in, out}∗,
ρ :t ∆, σ, σf and (x : n) ∈ Γ,

Pr (〈ρ, σ, c1〉 →∗ 〈[ρ̃f], σf , skipx〉) = Pr (〈ρ, σ, c2〉 →∗ 〈[ρ̃f], σf , skipx〉)

where the event φ →∗ 〈[ρ̃f], σf , skipx〉 is that of φ terminating on some configuration 〈ρ′, σ′, x(∆ρ′)〉
such that ρ̃′ = ρ̃f and σ′ = σf .

80 4.3. Program Equivalence

This does solve the α-equivalence problem. Indeed, by ignoring the qubit names at the final
state, we are allowing final states resulting from α-equivalent programs to be equated.

But this probabilistic skip equivalence fails to verify a key equation exhibiting quantum behaviour:
eq. (C). We demonstrate this by considering the following equation:

x : 1 | a ` applyU(a, a.discard(a, x)) = discard(a, x)

where U is a single qubit unitary. Reasoning about its reduction paths gives

〈
ρ

a in h

, σ, applyU(a, a.discard(a, x))
〉

→1

〈
ρ

a
in hU

, σ,measure(a, x, x)
〉

→pi

〈
1
pi ρ

in hU

i

, σ, x

〉

whereas

〈
ρ

a in h

, σ, discard(a, x)
〉

→p′
i

〈
1
p′
i

ρ

in h
i

, σ, x

〉

for i = 0, 1. Unfortunately, because we cannot reason about the sum of density matrices, it is
not possible to show equivalence in the sense of definition 4.3.5.

4.3.3 A ‘quantum’ equivalence

This leads us naturally to the following definition:
Definition 4.3.6 (Quantum reduction). Let Γ | ∆ ` c, X0 ∈ Ob CP, t = (q, T) ∈ Stream(X0),
σ ∈ {in, out}∗, ρ :t (∆, σ). Let φ = 〈ρ, σ, c〉.

For (x : n) ∈ Γ, we write φ ⇓Γ,t
p [ρ̃f , σf , skipx] to mean

p = Pr(φ →∗ 〈−, σf , skipx〉) =
∑

ψ∈Config
Pr(φ →∗ 〈ψ, σf , x(∆ψ)〉)

by the law of total probability, and

ρ̃f =
∑
ψ

Pr(φ →∗ 〈ψ, σf , x(∆ψ)〉) · ψ̃.

Note that this sum is well defined because by type preservation, any such ψ satisfies ψ :t (∆ψ, σf)
where |∆ψ| = n. Thus for any such ψ we have ψ̃ : I → qbit⊗n ⊗ qbit ⊗ q(σf).

4. An Algebraic Theory for Quantum Communication 81

Lemma 4.3.7 (Induction principle for ⇓Γ,t
p). Let φ and φ0, φ1 be well-typed configurations and

assume that φ →qi φi (i ∈ J and J is finite) where ∑i qi = 1. Then

φ ⇓Γ,t
p [ρ̃f , σf , skipx] ⇐⇒ ∀i ∈ J.

(
φ →qi φi ⇓Γ,t

pi
[ρ̃i, σf , skipx]

)
with p = ∑

i∈J qipi and ρ̃f = 1
p
(∑i∈J qipiρ̃i)

Proof. Follows directly from the probabilistic interpretation and the law of total probabilities.

Definition 4.3.8 (Quantum Equivalence 'qu). We write

Γ | ∆ ` c1 'qu c2

to mean that Γ | ∆ ` c1, c2, and for all X0 ∈ Ob CP, t = (q, T) ∈ Stream(X0), σ ∈ {in, out}∗,
ρ :t ∆, σ, σf and (x : n) ∈ Γ,

〈ρ, σ, c1〉 ⇓Γ,t
p [ρ̃f , σf , skipx] ⇐⇒ 〈ρ, σ, c2〉 ⇓Γ,t

p [ρ̃f , σf , skipx] .

Equivalently it means that

∑
ψ

Pr(〈ρ, σ, c1〉 →∗ 〈ψ, σf , x(∆ψ)〉) · ψ̃ =
∑
ψ

Pr(〈ρ, σ, c2〉 →∗ 〈ψ, σf , x(∆ψ)〉) · ψ̃

Remark: if we take the trace on both sides, we get the following equality

Pr(〈ρ, σ, c1〉 →∗ 〈[−], σf , skipx〉) = Pr(〈ρ, σ, c2〉 →∗ 〈[−], σf , skipx〉)

where the event φ →∗ 〈[−], σf , skipx〉 means that φ terminates on some state of the form
〈ρ′, σf , x(∆ρ′)〉 with no constraints.

4.3.4 Basic Properties

This definition does indeed satisfy basic desired properties.
Proposition 4.3.9 (Congruence). The relation Γ | ∆ ` c1 'qu c2 is a congruence.

Proof. By induction. We only show the (var), (new) and (measure) cases; all the other cases
are analogous to (new).

Case (var): Indeed it is easy to see that Γ | π(~a) ` x(~a) 'qu x(~a): indeed both sides type check
and by definition reduce to the same thing with the same probability.

Case (new): Assume that Γ | ∆, q ` c1 'qu c2 we wish to show that Γ | ∆ ` new(q.c1) 'qu

new(q.c2). Indeed, both sides type check. Moreover, let φ1 = 〈ρ, σ, new(q.c1)〉 and φ2 =

82 4.3. Program Equivalence

〈ρ, σ, new(q.c2)〉 for ρ :t ∆, σ. Then it follows that

φ1 ⇓Γ,t
p [ρ̃f , σf , skipx] ⇐⇒

〈
ρ

s in h

0

q

, σ, c1

〉
⇓Γ,t
p [ρ̃f , σf , skipx] (by lemma 4.3.7)

⇐⇒
〈

ρ

s in h

0

q

, σ, c2

〉
⇓Γ,t
p [ρ̃f , σf , skipx] (IH)

⇐⇒ φ2 ⇓Γ,t
p [ρ̃f , σf , skipx] (lemma 4.3.7)

Case (measure): Assume that Γ | ∆,∆′ ` c0 'qu c1 and Γ | ∆,∆′ ` d0 'qu d1 we wish to
show that Γ | ∆, q,∆′ ` measure(q, c0, c1) = measure(q, d0, d1). Indeed, both sides type check.
Moreover, let φ = 〈ρ, σ,measure(q, c0, c1)〉 and φ′ = 〈ρ, σ,measure(q, d0, d1)〉. It follows that

φ ⇓Γ,t
p [ρ̃f , σf , skipx]

⇐⇒ ∀i = 0, 1.
〈

ρ

s in h

0

q

, σ, ci

〉
⇓Γ,t
p [ρ̃f , σf , skipx] (by lemma 4.3.7)

⇐⇒ ∀i = 0, 1.
〈

ρ

s in h

0

q

, σ, di

〉
⇓Γ,t
p [ρ̃f , σf , skipx] (IH)

⇐⇒ φ′ ⇓Γ,t
p [ρ̃f , σf , skipx] (lemma 4.3.7)

Proposition 4.3.10 (Compatibility with 'α). If Γ | ∆ ` c1 'α c2 then Γ | ∆ ` c1 'qu c2.

Proof outline. Assume that Γ | ∆ ` c1 'α c2. Because both 'α and 'qu are congruences, we
need only show that if c1 = op(~a, (~bi.ci)i) and c2 = op(~a, (~di.ci[~di/~bi])) then c1 'qu c2.

And indeed, this is the case simply because they are the same program, so they will reduce to
the same configurations with the same probability; and because the definition of 'qu ignores
the names at the end, it follows easily that c1 'qu c2.

Proposition 4.3.11 (Relating probabilistic and quantum equivalences). If c1 'skip
pr c2 then

c1 'qu c2.

Proof. Follows directly from definitions. Indeed if Γ | ∆ ` c1 'skip
pr c2, we have that

Pr (〈ρ, σ, c1〉 →∗ 〈[ρ̃f], σf , skipx〉) = Pr (〈ρ, σ, c2〉 →∗ 〈[ρ̃f], σf , skipx〉)

4. An Algebraic Theory for Quantum Communication 83

And so, by the law of total probability, it follows that

Pr (〈ρ, σ, c1〉 →∗ 〈[−], σf , skipx〉) = Pr (〈ρ, σ, c2〉 →∗ 〈[−], σf , skipx〉)

and
∑
ψ

Pr(〈ρ, σ, c1〉 →∗ 〈ψ, σf , x(∆ψ)〉) · ψ̃ =
∑
ψ̃

Pr(〈ρ, σ, c1〉 →∗
〈
[ψ̃], σf , skipx

〉
) · ψ̃

=
∑
ψ̃

Pr(〈ρ, σ, c2〉 →∗
〈
[ψ̃], σf , skipx

〉
) · ψ̃

=
∑
ψ

Pr(〈ρ, σ, c2〉 →∗ 〈ψ, σf , x(∆ψ)〉) · ψ̃

as required.

4.3.5 Reduction Paths and Compatibility with Substitution

Finally, we have to prove the compatibility of 'qu with substitution, i.e. if two programs are
equivalent, then instantiating a computation variable with an arbitrary continuation preserves
that equivalence. This is actually not a trivial fact to prove. In fact, suppose two programs c
and c′ are equivalent under 'qu, and further suppose that under state ρI , stream t and σI we
have two distinct paths in c: πi=1,2 : 〈ρI , σI , c〉 →∗

pi
〈ρi, σf , skipx〉, as well as two distinct paths

from c′: π′
i=1,2 : 〈ρI , σI , c′〉 →∗

p′
i

〈ρ′
i, σf , skipx〉 such that ∑i piρi = ∑

i p
′
iρ

′
i, but the ρi’s and the

ρ′
i’s are distinct states. Intuitively, it is unclear whether there exists a continuation that we

can insert in place of x that can distinguish the ρi’s from the ρ′
i’s, but if this were the case, we

would have broken the equivalence between the substitutions of c and c′.

It turns out that this can never happen, and we will show this fact mathematically. For this
purpose, we first need to define an abstract notion of reduction paths that does not depend on
an initial state.

4.3.5.1 Abstract reduction paths overapproximate concrete reduction sequences

We begin by giving a symbolic notion of reduction paths generated from a program c.
Definition 4.3.12 (Abstract Reduction paths). An abstract reduction path P from a term
Γ | ∆ ` c is informally a sequence of terms c0 → c1 → ... → cn such that c0 = c, cn = skipx for
some x and each measurement is paired with its measurement outcome. We formally define the
set of reduction paths from Γ | ∆ ` c as Path (c) as in fig. 4.5.

Conventionally, we call an abstract reduction path from a term c a ‘path’, whereas concrete
reduction sequences from a given configuration 〈ρ, σ, c〉 will be referred to as ‘sequences’.
Remark 4.3.13. Paths P ∈ Path (c) are exactly the linear subtrees of c’s typing derivation, i.e.
subtrees which can be written as a list from c to its root.

84 4.3. Program Equivalence

Path (T ≡ Γ | ∆, q,∆′ ` measure(q, c0, c1)) = {T →(0) L0 | L0 ∈ Path (c0)}
∪ {T →(1) L1 | L1 ∈ Path (c1)}

Path (T ≡ Γ, x : n,Γ′ | ~a ` x(~a)) = {T}
Path (T ≡ Γ, x : n,Γ′ | π(~a) ` x(~a)) = {T → Γ, x : n,Γ′ | ~a ` x(~a)}

(where π 6= id is a permutation)
Path (T) = {T → L | L ∈ Path (c)}

(for any other T of the form Γ | ∆ ` op(~a,~b.c)).

Figure 4.5: Definition for the Reduction Path Path (T) where T is an instance of the typing relation.

For any path P ∈ Path (c), we write σ(P) ∈ {in, out}∗ as the sequence of inputs and outputs
which happen in P , and define it as follows:

σ(Γ | ∆ ` in(q.c) → P) = in + σ(P)
σ(Γ | ∆, q,∆′ ` out(q, c) → P) = out + σ(P)

σ(Γ, x : n,Γ′ | π(~a) ` x(~a)) = ε

σ((Γ | ∆ ` c) → P) = σ(P) (c 6= in, c 6= out)

For any path P , we also write xP : nP to denote the computation variable called by P at the
end.
Proposition 4.3.14. Given a term Γ | ∆ ` c, a path P ∈ Path (c) is fully determined by a list
of measurement outcomes, one for each measurement along the path.

Proof. Evident, because measurement is the only case where there is a choice of the branch to
take when constructing the path.

Definition 4.3.15 (Reduction sequence induced by a path). Let Γ | ∆ ` c and P ∈ Path (c),
a reduction sequence π = 〈ρ0, σ0, c0〉 → ... → 〈ρn, σn, cn〉 where c0 = c and cn = skipx where
x : n ∈ Γ is said to be induced by P = c = d0 → d1... → dn = skipxP if

• xP = x,

• ci = di for all i = 0...n,

• σn = σ0 + σ(P)

• For each measurement along π, say φ → φ′ such that the measurement outcome is i, the
corresponding c →j c

′ in P satisfies j = i.

We denote this as π : P .

4. An Algebraic Theory for Quantum Communication 85

The reason why we create this formalism is demonstrated in the following proposition: we
wish to say that the possible concrete reductions from a given configuration can be safely
overapproximated by the abstract, symbolic reduction paths of the program itself. Note that
we distinguish between concrete reduction sequences with the same sequence of configurations
but different measurement outcomes at each measurement, for it wil be vital in the subsequent
proof.
Proposition 4.3.16 (Concrete reduction sequences are induced by abstract reduction paths).
Let Γ | ∆ ` c. Let t ∈ StreamX0, σ0 ∈ {in, out}∗ and ρ0 :t ∆, σ0. Then there is an injection
from every possible concrete reduction sequence π from 〈ρ0, σ0, c〉, to the abstract reduction
paths Path (c). In other words, for every reduction sequence π there is a distinct unique path
P 〈ρ0,σ0,c〉(π) ∈ Path (c) such that π : P 〈ρ0,σ0,c〉(π).

Proof. By induction over the structure of c.

Case (var): If Γ | ∆ ` x(∆) for some x ∈ ∆, any configuration 〈ρ0, σ0, x(∆)〉 will not reduce.
The corresponding singleton reduction path will thus be induced by the unique element in
Path (Γ | ∆ ` x(∆)) = {Γ | ∆ ` x(∆)}.

If we have Γ | π(∆) ` x(∆), then for any ρ0, σ0, the reduction path will look like π =
〈ρ0, σ0, x(∆)〉 → 〈π−1 ◦ ρ0, σ0, x(∆)〉. On the other hand, Path (c) = {Γ | π(∆) ` x(∆) →
Γ | ∆ ` x(∆)}. Call P its unique element, then we clearly have that π : P .

Case (measure): We assume that Γ | ∆,∆′ ` ci for i = 0, 1 as well as Γ | ∆ ` measure(q, c0, c1).
By (IH) we have that for every i = 0, 1 and every valid configuration 〈ρ, σ, ci〉, there is an
injection π 7→ P 〈ρ,σ,ci〉(π) from its possible reduction sequences to Path (ci).

Now let ρ, σ be such that φ = 〈ρ, σ,measure(q, c0, c1)〉 is well-formed. Then for reduction path
π starting at φ we know that either π = φ → 〈ρ0, σ, c0〉 or π = φ → 〈ρ1, σ, c1〉 (where ρi is the
state given measurement outcome i), if their probabilities are not zero. On the other hand, we
know that Path (measure(q, c0, c1)) = {measure(q, c0, c1) →(0) Path (c0)}∪{measure(q, c0, c1) →(1)

Path (c1)}. Therefore, we can simply construct P φ as the map

P φ : π 7→

measure(q, c0, c1) →(0) P φ0(π′) (if π = φ → π′ with meas. outcome 0)
measure(q, c0, c1) →(1) P φ1(π′) (if π = φ → π′ with meas. outcome 1)

where φ0 = 〈ρ0, σ, c0〉 and φ1 = 〈ρ1, σ, c1〉. This map is injective by definition, because we are
distinguishing between concrete reduction sequences with different measurement outcomes. Note
that it is here that we are approximating: when doing a measurement, one of the branches
might have probability 0, in which case all paths corresponding to the branch will not have a
corresponding concrete reduction sequence.

86 4.3. Program Equivalence

Case (in): We assume that Γ | ∆, q ` c and Γ | ∆ ` in(q.c). Furthermore, (IH) says that for
every valid configuration 〈ρ, σ, c〉, there is an injection π 7→ P 〈ρ,σ,c〉(π) from its possible reduction
sequences to Path (c).

Now let ρ0, σ0 such that φ0 = 〈ρ0, σ0, in(q.c)〉 is well-formed. Then, we know from inversion that
every path π starting at φ0 is of the form φ0 →1 〈ρ1, σ0 + in, c〉, where ρ1 is the evolved state,
which is well-formed by type preservation. On the other hand, we know that Path (in(q.c)) =
{in(q.c) → P ∈ Path (c)}. Thus, we can inject all reduction sequences from 〈ρ0, σ0, in(q.c)〉 to
Path (in(q.c)) with the map

P φ0 : π 7→ in(q.c) → P 〈ρ1,σ0+in,c〉(π′)

where π = φ0 → π′ and π′ is a sequence starting at 〈ρ1, σ0 + in, c〉.

Case (out), (new), (apply): analogous, because they are all deterministic.

Remark 4.3.17. We can also reason about the inverse of the map defined in the above proposition.
In fact, every path P ∈ Path (c) along with a starting state φ = 〈ρI , σI , c〉 canonically induces a
reduction sequence πφP : P , which may not be well-defined if Pr(πφP) = 0.

4.3.5.2 State evolution only depends on the abstract path and the stream state

Perhaps surprisingly at first, not only do reduction paths completely determine concrete reduction
sequences, they also fully determine the evolution of the global quantum state given a concrete
stream t ∈ StreamX0 and a stream state σ ∈ {in, out}∗. Intuitively, this is because choosing a
path P chooses the measurement outcomes, hence grounds all the possible non-determinism in
a concrete reduction sequence (proposition 4.3.14), and the map that such a path P would give
can be taken directly from accumulating the CP map that the operational semantics applies to
the state at every step. Of course, P might have probability 0, but in this case, the resulting
accumulated map will be a 0 map.

More formally, let us define JP K(q,T),σ, the interpretation of P under stream (q, T) and trace σ.
By convention, we interpret contexts as follows:

• For any n ∈ N, JnK , qbit⊗n.

• For any parameter context ∆, J∆K , J|∆|K, where |∆| is the size of ∆.
Definition 4.3.18 (Interpretation of paths with concrete streams). Let Γ | ∆ ` c, P ∈ Path (c),
and concrete stream t = (q, T) ∈ StreamX0. The interpretation of P in t at state σ is given by
a morphism JP K(q,T),σ : J∆K ⊗ qbit ⊗ q(σ) → JnP K ⊗ qbit ⊗ q(σ + σ(P)) in CP defined as in
fig. 4.6.

4. An Algebraic Theory for Quantum Communication 87

JΓ′′ | ~a ` x(~a)Kt,σ = idJnK⊗qbit⊗q(σ)

JΓ′′ | π(~a) ` x(~a) → Γ′′ | ~a ` x(~a)Kt,σ = π−1 ⊗ idqbit ⊗ idq(σ)

JΓ | ∆ ` new(q.c) → P Kt,σ = 0J∆K q(σ)
; JP Kt,σ

JΓ | ∆, q,∆′ ` measure(q, c0, c1) →(i) P Kt,σ = i
J∆K

J∆′K
q(σ)

; JP Kt,σ

JΓ | ∆ ` applyU(~a,~b.c) → P Kt,σ =
π

U

π−1

Jπ′(∆,~a)K
q(σ)

Jπ′(∆,~b)K

; JP Kt,σ

(where π is as in fig. 4.4.)

JΓ | ∆ ` in(q.c) → P Kt,σ =
T (σ, in)

J∆K q(σ)

q(σ + in); JP Kt,σ+in

JΓ | ∆, q,∆′ ` out(q, c) → P Kt,σ = T (σ, out)

J∆K J∆′K q(σ)

q(σ + out)
; JP Kt,σ+out

Figure 4.6: Interpretation of path P with stream t = (q, T) at state σ. Note that unlabelled wires
are of type qbit, and that Γ′′ , Γ, x : n, Γ′

Proposition 4.3.19 (State evolution given the path and the stream). Let Γ | ∆ ` c and P ∈
Path (c). Let t = (q, T) ∈ StreamX0 be a stream. Also let π be 〈ρI , σI , c〉 → ... →

〈
ρf , σf , skipxP

〉
.

Let π : P , then

Pr(π) · ρf
=

ρI

JP K(t,σI)

Proof. The proof is by induction on the structure of P , and follows directly from the definition
of the operational semantics.

For P = Γ, x : n,Γ′ | ~a ` x(~a), the path has no transition, thus π will also be a singleton
sequence, meaning that ρf = id ◦ ρI as required.

88 4.3. Program Equivalence

For P = Γ, x : n,Γ′ | π(~a) ` x(~a) → Γ, x : n,Γ′ | ~a ` x(~a), we get one deterministic transition
which indeed applies π−1 on ρI to obtain ρf , as required.

For all the deterministic cases (every case apart from measurement), the result follows from the
definition of the operational semantics.

Finally, for P = Γ | ∆, q,∆′ ` measure(q, c0, c1) →(i) P ′ where P ′ ∈ Path (ci), the proof goes as
follows. By reasoning on (measure) rule of the operational semantics, we know that π is of the
form 〈ρI , σI ,measure(q, c0, c1)〉 →pi π

′ where pi > 0, π′ : P ′ is some reduction sequence starting

from
〈

1
pi
ρ, σI , ci

〉
, pi = trρ, and ρ = 1

pi ρI

i
.

By (IH), we get that

Pr(π′) ρf
= 1
pi

ρI

JP ′K(t,σI)

i

And multiplying pi on both sides and using the definition of Pr(π) and JP Kt,σI the equality
follows.

Remark 4.3.20. It is also worth noting that if Pr(π〈ρI ,σI ,c〉
P) = 0 with P ∈ Path (c), then

ρI

JP K(t,σI)

= 0

holds. Informally, this is because the reduction sequence π〈ρI ,σI ,c〉
P will be well-defined up to a

measurement where the branch taken in π
〈ρI ,σI ,c〉
P has 0 probability, meaning that the trace of the

corresponding post-measurement state ρ

i
is 0. By lemma 2.3.6, we thus know that the

resulting state is the 0 matrix, which implies that the final state is the 0 matrix.
Corollary 4.3.21. We have the equality∑

π:〈ρI ,σI ,c〉→∗
〈
ρf ,σI+σ,skipx

〉Pr(π) · ρ̃f =
∑

P∈Path(c),xP=x,σP=σ
JP Kt,σI ◦ ρI

Proof.

LHS =
∑

P∈Path(c)
s.t. xP=x,σP=σ

∃π:〈ρI ,σI ,c〉→∗
〈
ρf ,σI+σ,skipx

〉
.

P

〈
ρI ,σI ,c

〉
(π)=P

Pr(π) · ρ̃f (proposition 4.3.16)

4. An Algebraic Theory for Quantum Communication 89

=
∑

P∈Path(c)
s.t. xP=x,σP=σ

∃π.P
〈
ρI ,σI ,c

〉
(π)=P

ρI

JP K(t,σI)

(proposition 4.3.19)

=
∑

P∈Path(c)
s.t. xP=x ∧ σP=σ ρI

JP K(t,σI)

(cf. remark 4.3.20)

= RHS

4.3.5.3 Compatibility with substitution

With the above results, compatibility with substitution falls out naturally as a corollary.
Proposition 4.3.22 (Compatibility with substitution). If Γ, x : n,Γ′ | ∆ ` c1 'qu c2 and
Γ,Γ′ | ∆′ ` c then Γ,Γ′ | ∆ ` c1{∆′ ` c/x} 'qu c2{∆′ ` c/x}.

Proof. For our convenience, we use the following notation:

• We note c1{∆′ ` c/x} as c′
1 and resp for c′

2.

• The initial states are noted as φ1 = 〈ρI , σI , c′
1〉 and φ2 = 〈ρI , σI , c′

2〉.

• We write φ̄1 (resp φ̄2) for 〈ρI , σI , c1〉 (resp 〈ρI , σI , c2〉) as the initial state if we were to run
the programs before substitution.

Firstly, the assumption means that for all σ and for all z ∈ (Γ, x : n,Γ′) and σ ∈ {in, out}∗,

∑
ψ

Pr(φ̄1 →∗ 〈ψ, σ, skipx〉) · ψ̃ =
∑
ψ′

Pr(φ̄2 →∗ 〈ψ′, σ, skipx〉) · ψ̃′

We wish to show that for any y ∈ (Γ,Γ′) and any σf ∈ {in, out}∗,

∑
ρ

Pr(φ1 →∗
〈
ρ, σf , skipy

〉
) · ρ̃ =

∑
ρ′

Pr(φ2 →∗
〈
ρ′, σf , skipy

〉
) · ρ̃

Let’s focus on studying the LHS. Firstly, given an execution sequence of the form φ1 →∗ 〈ρ, σf , y〉,
we know that either it followed a path completely captured in the reduction tree for φ̄, or it
followed a path in the reduction tree of φ̄ up to a configuration of the form 〈ψ, σ, skipx〉 for some
σ and ψ, then continues according to φ’s reduction tree from 〈ψ, σ, c[∆ψ/∆′]〉 to a configuration
of the form

〈
ρ, σf , skipy

〉
.

90 4.3. Program Equivalence

In other words, we get that

LHS =
∑
ρ

Pr(φ̄1 →∗
〈
ρ, σf , skipy

〉
) · ρ̃

+
∑
ρ,ψ,σ

Pr(φ̄1 →∗ 〈ψ, σ, skipx〉 ∧ 〈ψ, σ, c[∆ψ/∆′]〉 →∗
〈
ρ, σf , skipy

〉
) · ρ̃.

Now, by assumption, we know that∑
ρ

Pr(φ̄1 →∗
〈
ρ, σ, skipy

〉
) · ρ̃ =

∑
ρ

Pr(φ̄2 →∗
〈
ρ, σ, skipy

〉
) · ρ̃

Thus it suffices to show∑
ρ,ψ,σ

Pr(φ̄1 →∗ 〈ψ, σ, skipx〉 ∧ 〈ψ, σ, c[∆ψ/∆′]〉 →∗
〈
ρ, σf , skipy

〉
) · ρ̃

=
∑
ρ,ψ,σ

Pr(φ̄2 →∗ 〈ψ, σ, skipx〉 ∧ 〈ψ, σ, c[∆ψ/∆′]〉 →∗
〈
ρ, σf , skipy

〉
) · ρ̃.

Let’s consider the LHS.

LHS =
∑
σ

∑
ψ

Pr(φ̄1 →∗ 〈ψ, σ, skipx〉)
∑
ρ

[
Pr(〈ψ, σ, c[∆ψ/∆′]〉 →∗

〈
ρ, σf , skipy

〉
) · ρ̃

]

Let σ and ψ be fixed and arbitrary. Then∑
ρ

Pr
(
〈ψ, σ, c[∆ψ/∆′]〉 →∗

〈
ρ, σf , skipy

〉)
· ρ̃

=
∑

π:
〈
ψ,σ,c[∆ψ/∆′]

〉
→∗
〈
ρ,σf ,skipy

〉
for some end state ρ

Pr(π) · ρ̃

=
∑

P∈Path
(
c[∆ψ/∆′]

)
s.t. xP=y∧σ+σP=σf

ψ

JP K(t,σ)

(corollary 4.3.21)

Note that in this sum, the side condition on P does not actually depend on ψ. Indeed, JP Kt,σ is
invariant under α conversion, which means that the names in ∆ψ are irrelevant to the proof.

It now follows that

LHS =
∑
σ

∑
ψ

Pr(φ̄1 →∗ 〈ψ, σ, skipx〉) ψ

∑
P JP K(t,σ)

=
∑
σ

∑
ψ

Pr(φ̄2 →∗ 〈ψ, σ, skipx〉) ψ

∑
P JP K(t,σ)

(assumption)

= RHS (by same reasoning)

4. An Algebraic Theory for Quantum Communication 91

4.3.6 Satisfying equations of I/O ⊗ QUANTUM

The final step to show that the system we have is a model is to show that the quantum
equivalence satisfies the equations of I/O ⊗ QUANTUM.
Lemma 4.3.23. Consider the term x : n | ~a ` discardn(~a.x). Let ρ :t (~a), σ, then

〈ρ, σ, discardn(~a.x)〉 ↓tpi

〈
1
pi ρ

in h

~a

i

, σ, x

〉
where pi = tr

 ρ

in h

~a

i

for i = 0...n− 1.

Proof. We write each i = 0...n− 1 as an n bit number i1i2...in where ik = 0, 1. For convenience,
let’s write

ρi1...ik =
ρ

in h

...a1

an

i1

i2
ik

ak

...

and qi1...ik = tr(ρi1...ik).

〈ρ, σ, discardn(~a.x)〉 →qi1

〈
1
qi1
ρi1 , σ, discardn−1(a2...an.x)

〉

→qi1i2/qi1

〈
1
qi1i2

ρi1i2 , σ, discardn−2(a3...an.x)
〉

... →qi1...ik/qi1...ik−1

〈
1

qi1...ik
ρi1ik , σ, discardn−k(ak+1...an.x)

〉

... →qi1...in/qi1...in−1

〈
1

qi1...in
ρi1in , σ, x

〉

Thus with probability

pi = qi1 × qi1i2/qi1 ...× qi1...in/qi1...in−1 = qi1...in

(unless one of the probabilities is 0, in which case we don’t need to consider it) the configuration
〈ρ, σ, discardn(~a.x)〉 terminates on state

〈
1
pi
ρi1...in , σ, x

〉
as required.

Proposition 4.3.24 (Satisfying equations of I/O ⊗ QUANTUM). 'qu satisfies all equations of
I/O ⊗ QUANTUM.

92 4.3. Program Equivalence

Proof. We simply show that 'qu satisfies all equations by showing the reduction sequences. For
convenience, we write c for the LHS and c′ for the RHS of the equations.

Equation (A): c = applyX(a, a.measure(a, x1, x0)) and c′ = measure(a, x0, x1).

Then we have for arbitrary ρ :t (a), σ we get

〈ρ, σ, c〉 ↓tpi

〈
1
pi ρ

a
in h

X

i

, σ, x1−i

〉
and 〈ρ, σ, c′〉 ↓tp′

i

〈
1
p′
i

ρ

a
in hi

, σ, xi

〉

for i = 0, 1, whereby because

ρ

a
in h

X

i

= ρ

a

in h1 − i

this actually gives the same reduction sequences with the same probability (p1−i = p′
i). Thus,

c 'skip
pr c′ holds, which implies that c 'qu c

′.

Equation (B): here we have

c = measure(a, applyU(~b,~b.x(~b), applyV (~b,~b.y(~b))))

and

c′ = applyD(U,V)((a,~b), (a,~b).measure(a, x(~b), y(~b))).

First, let’s look at c.

〈ρ, σ, c〉 ↓tp0

〈
1
p0 ρ

a
in hb0

U
, σ, x(~b)

〉
and 〈ρ, σ, c〉 ↓tp1

〈
1
p1 ρ

a
in hb1

V
, σ, y(~b)

〉

where

pi = tr

ρ

a
in hbi

4. An Algebraic Theory for Quantum Communication 93

On the other hand, we have that

〈ρ, σ, c′〉 ↓tp′
0

〈
1
p′

0 ρ

a
in hb0

D(U, V)
, σ, x(~b)

〉

and

〈ρ, σ, c′〉 ↓tp′
1

〈
1
p′

1 ρ

a
in hb0

D(U, V)
, σ, y(~b)

〉

where

p′
i = tr

 ρ

a
in hbi

D(U, V)

It is easy to see that along both branches, we get the same state, by definition of controlled

gates D(U, V). Moreover, pi = p′
i because U and V are unitaries, thus trace-preserving.

Equation (C): c = applyU(~a,~a.discardn(~a, x)) and c′ = discardn(~a, x). First, let ρ :t (~a), σ, we

know by lemma 4.3.23 that

φ = 〈ρ, σ, c〉 ↓tpi

〈
1
pi ρ

in h
~a

i

U
, σ, x

〉
where pi = tr

 ρ

in h
~a

i

U

and

φ′ = 〈ρ, σ, c′〉 ↓tp′
i

〈
1
p′
i ρ

in h

~a

i

, σ, x

〉
where p′

i = tr

 ρ

in h

~a

i

94 4.3. Program Equivalence

for i = 0...n− 1. Now because ∑i pi = ∑
i p

′
i = 1, it follows that

φ ⇓Γ,t
1

∑
i ρ

in h
~a

i

U
, σ, skipx

and φ′ ⇓Γ,t

1

∑
i ρ

in h

~a

i

, σ, skipx

and by recognising the sum over the projection operators 〈i| − |i〉 as a trace operator, we can
see that the two states are equal because unitaries are trace-preserving. Hence c 'qu c

′.

Equation (D): c = new(a.measure(a, x, y)), c′ = x.

φ →1

〈
ρ

in h

0

a

, σ,measure(a, x, y)
〉

→1

〈
ρ

in h

0

0

, σ, x

〉
= φ′

Equation (E): we have

c = new(a.applyD(U,V)((a,~b), (a,~b).x(a,~b)))

c′ = applyU(~b,~b.new(a.x(a,~b)))

φ ↓t1

〈
1
pi ρ

inh

D(U, V)
a b

0
, σ, skipx

〉

φ′ ↓t1

〈
1
p′

0 ρ

inh

a

b

U0
, σ, skipx

〉

which are equal states by definition of D(U, V).

Equations (F)-(I): These are properties of unitaries which are easily checked because of the
definition of our operational semantics.

Equations (J)-(L): These are commutative equations which follow from the fact that the
category CP in which we’re taking the state is monoidal.

Equations (U)-(Z): Likewise, these can be shown to follow from the fact that CP is monoidal.
Here, we show the proof for (W) and (X).

4. An Algebraic Theory for Quantum Communication 95

Equation (W): We have

c = measure(a, in(b.x0(b)), in(b.x1(b)))

and
c′ = in(b.measure(a, x0(b), x1(b)))

.

φ ↓tpi

〈
1
pi ρ

in

i

a

b
T (σ, in)

hin

h
, σ + in, xi(b)

〉
where pi = tr ρ

ini

a

h

φ′ ↓tp′
i

〈
1
p′
i

ρ
in

i

a

b
T (σ, in)

hin

h
, σ + in, xi(b)

〉
where p′

i = tr ρ
in

i

a

b
T (σ, in)

hin

h

So it suffices to show that pi = p′
i, which follows from the fact that T (σ, in) is in CPTP, hence

trace-preserving.

Equation (X): c = new(a.out(b, x(a))), c′ = out(b, new(a.x(a))).

φ ↓t1

〈
ρ
in h

a

b0
T (σ, out)

inh

, σ + out, x(a)
〉

φ′ ↓t1

〈
ρ
in h

a

b0
T (σ, out)

inh

, σ + out, x(a)
〉

so we are done.

Theorem 4.3.25 (Model). Terms modulo quantum equivalence is a model of I/O ⊗ QUANTUM.

Proof. We take the syntactic category exactly as in definition 3.2.7. As our terms are exactly
those of a Bij PAT, we need only show our notion of equivalence 'qu satisfies all the axioms
(proposition 4.3.24), be compatible with substitution (proposition 4.3.22) and α-equivalence
(proposition 4.3.10), be a congruence (proposition 4.3.9), and be reflexive (follows from
congruence) and transitive (easy to verify). Thus, we can define the canonical syntactic
Bij action on those terms, making our terms modulo quantum equivalence a non-trivial model
of I/O ⊗ QUANTUM.

5
A Monadic Denotational Semantics

The previous chapter has seen an ad hoc operational semantics as a model of our algebraic
theory, i.e. an implementation of our notion of computation. It nicely demonstrates the model
of computation and the program equivalence that we wished to axiomatise. In this chapter, we
present a complementary model of I/O ⊗ QUANTUM based on an elegant monadic denotational
semantics. We do so by building on the insights from section 4.3.5 (section 5.1). Then, in
section 5.2, we draw knowledge from existing literature on modelling the I/O theory as a monad
and explicitly construct one in CP∞, which is CP freely extended with infinite biproducts [52].
In section 5.3, we show that our denotational semantics is adequate (theorem 5.3.4) and fully
abstract (theorem 5.3.6) for the operational semantics. Then, in section 5.4, we use the previous
results to deduce that our monadic semantics give a model of I/O ⊗ QUANTUM (theorem 5.4.1,
corollary 5.4.2). Finally, still in section 5.4, we briefly discuss the possibility of our monad being
additionally fully complete for I/O ⊗ QUANTUM (conjecture 5.4.3).
Convention 5.0.1. In this chapter, to avoid confusion due to overloaded Greek letters, we
uniformly write proj and inj to denote projection and injection morphisms for biproducts.

5.1 Motivation

In section 4.3.5, we have defined a notion of abstract reduction paths P ∈ Path (c), and a way
of interpreting these paths concretely given a concrete stream JP Kt,σ : J∆K ⊗ qbit ⊗ q(σ) →
JnP K⊗qbit⊗q(σ+σ(P)). One thing we could have noted is that given a path P , the map JP Kt,σ

is constructed in exactly the same way for every concrete stream. Is it possible to potentially
abstract away from concrete streams?

97

98 5.1. Motivation

Perhaps there is. In constructing P , it is easy to see that the stream is only really needed when
we are performing an input or an output (fig. 4.6). Consider Jout(q, c) → P Kt,σ, which simply
performs the following map of type J∆K⊗qbit⊗J∆′K⊗qbit⊗q(σ) → J∆K⊗J∆′K⊗qbit⊗q(σ+out)
before applying the rest of the path:

T (σ, out)

out
If we ignore the stream, we get the following map of type J∆K⊗qbit⊗J∆′K → J∆K⊗J∆′K⊗qbitout.

out
Perhaps this map does not do much, but if we write out the entire inductive definition, we
would be applying the continuation on J∆K ⊗ J∆′K only. In other words, the dangling qubit
corresponds to an open output.

Likewise, consider Jin(q.c) → P Kt,σ, which performs the following map of type J∆K⊗qbit⊗q(σ) →
J∆K ⊗ qbit ⊗ qbit ⊗ q(σ + in) before applying the continuation.

T (σ, in)

in
If we also ignore the stream here, we get the following map of type J∆K ⊗ qbit → J∆K ⊗ qbit.

in
Knowing that the previous map would have had as codomain J∆K, we have simply added a
qubit wire as open input.

Here comes the first insight and the first difficulty: we can ignore the stream’s evolution and
accumulate open input and output wires, but at first glance, it is unclear how we can make sure
that we also accumulate a causal ordering of the inputs and outputs based on the trace of that
path σ(P).

The second difficulty comes from the proof of proposition 4.3.22. Recall that the notion of
program equivalence we want to model does not compare the results of individual reduction
paths P . Instead, it classifies them by the trace they generate σ(P) as well as the continuation
xP that they end up calling. Therefore, in a denotational semantics, not only do we need to
record the result for all the paths, we would also want a classification by trace σ and continuation
variable x to happen.

5. A Monadic Denotational Semantics 99

5.2 Constructing the Quantum I/O Monad

In search of a solution, we turn to existing literature on the I/O theory, its corresponding monad,
and the relevant constructions.

5.2.1 The Free I/O Monad and the Resumptions Monad

Hyland, Plotkin and Power [31] studied the general I/O theory (with operations in : (unit | I)
and out : (O | unit), I and O are sets, and no equations). They gave the corresponding monad
TI/O : Set → Set as a ‘free’ monad, defined as follows. Let F : Set → Set be such that
F (Y) = (I → Y) + (O×Y), and let FX : Set → Set be the functor FX(Y) = F (Y) +X. Then,
the free I/O monad, if it exists, is defined as TI/O(X) , µFX , where µFX is the (countable
directed) colimit of the following diagram:

0 F0 FF0 FFF0 ...
[]F0 F ([]F0) FF ([]F0)

where []A : 0 → A is the unique function from the empty set to A. In Set, this monad does
exist and is exactly the monad generated by the general I/O theory briefly presented above. We
often write it using a least fixed point notation as TI/OX = µY.I → Y +O × Y +X.

In the same work, the authors also explore combining the general I/O theory with other theories.
However, when combining I/O with another theory L, they always opt for the sum I/O+L rather
than the tensor. The monad they then obtain, TI/O+L : Set → Set = µY.TL(I → Y +O×Y +X),
is a special case of the widely studied ‘resumptions’ monad transformer [15, 31], building the
sum of a monad T and the free monad of an endofunctor F as Tres(X) = µY.T (F (Y) + X).
Intuitively, this monad allows one to interleave effects from L with effects from I/O, i.e. doing
something from L, then performing an I/O operation, and then doing something else from L,
and so on.

In this work, however, we chose to study the tensor I/O ⊗ QUANTUM, which needs to satisfy
additional commutativity equations. While quotienting the sum monad could potentially give
what we wanted, the result will not be an explicit characterisation of our notion of computation,
which makes it unsatisfactory. Instead, our strategy is informally as follows. We recall the
commonly cited identity on tensors of Lawvere theories (e.g. [32]):

Mod(L ⊗ L′, C) ' Mod(L,Mod(L′, C))

where Mod(L, C) is the category of models of the Lawevere theory L in the category C. While we
have not proven this equivalence for our notion of parameterised algebraic theory, we conjecture
it to be true. Furthermore, recall that Staton has given a fully complete model of QUANTUM
in CPU ∼= CPTPop ⊂ CP [67]. Therefore, we will attempt to construct the free I/O monad
directly in CP.

100 5.2. Constructing the Quantum I/O Monad

Recalling CP’s compact closed structure, let FI/O : CP → CP be defined as

Y 7→ [I, Y] ⊕ (O ⊗ Y) = (I ⊗ Y) ⊕ (O ⊗ Y) = (qbitin ⊗ Y) ⊕ (qbitout ⊗ Y).

Note that the distinction between qbitin and qbitout is purely for our convenience and has no
mathematical meaning. Then, an I/O monad would be defined as

T (X) = µY.(qbitin ⊗ Y) ⊕ (qbitout ⊗ Y) ⊕X

which, if we unroll the fixed point, gives

T (X) = X ⊕ (qbitin ⊗X) ⊕ (qbitout ⊗X)

⊕ (qbitin ⊗ qbitin ⊗X) ⊕ (qbitin ⊗ qbitout ⊗X)

⊕ (qbitout ⊗ qbitin ⊗X) ⊕ (qbitout ⊗ qbitin ⊗X) ⊕ ...

=
⊕

σ∈{in,out}∗

[Aux(σ) ⊗X]

where Aux is inductively defined by

Aux(ε) = C

Aux(in + σ) = qbitin ⊗ Aux(σ)

Aux(out + σ) = qbitout ⊗ Aux(σ)

This definition is quite ideal. The first difficulty is solved because we will know exactly the
causal ordering of the inputs and outputs given the index of the corresponding object in the
biproduct. The second requirement is also met. If we are able to interpret terms Γ | ∆ ` c as
morphisms in the opposite of the Kleisli category KlT , then we would have JcK : J∆K → T (JΓK),
where T (JΓK) can be explicitly written as

T (JΓK) =
⊕
σ

Aux(σ) ⊗ JΓK =
⊕
σ

Aux(σ) ⊗ (
⊕
x:n∈Γ

JnK) ∼=
⊕
σ,x∈Γ

Aux(σ) ⊗ JnxK

(where we denote by nx the natural number such that (x : nx) ∈ Γ). Intuitively, this means that
c is expected to be translated to a map which takes a state of |∆| qubits as input and gives a
list of possible resulting states (with Aux(σ) open wires and nx qubit outputs), indexed by the
I/O trace σ and the continuation that was called x. Recalling the discussion from the previous
section, this happens to be exactly what we need to resolve the second difficulty.

However, unfortunately, this monad is not well-defined because CP does not have infinite
biproducts. Luckily, as we shall sketch in the next section, there is a way of constructing a
version of CP with infinite biproducts.

5. A Monadic Denotational Semantics 101

5.2.2 Infinite Biproducts for CP

In this section, we will sketch the construction of CP∞, a category of infinite biproducts of
matrix algebras Mn(C) and CP maps between them, exactly following Pagani, Selinger and
Valiron [52]. The reader may safely skip this section and assume the existence of such a category,
for its construction is irrelevant to the subsequent proofs.

As in section 2.3.3 where we construct CP as a finite biproduct completion, our construction
starts with a category CPM, where objects are natural numbers n and morphisms n → k are CP
maps Mn(C) → Mk(C). Recall that we can freely complete CPM with finite biproducts only
because finite ‘superpositions’ (sums) of morphisms ∑i∈I fi (where I is finite, and fi : n → m for
all i) exist in CPM, canonically defined by addition. To obtain infinite biproducts, however, we
require the existence of infinite sums, i.e. sums of the form ∑

i∈C fi where C is infinite. Because
these are not well defined in CPM, our first step will be to fix this.

Completing CPM with dcpo enrichment under the Löwner order We briefly describe
the construction of CPM exactly following [52]. First, every homset CPM(n,m) is partially
ordered by the Löwner order v, defined as follows: A w B iff A−B is positive semi-definite (or
equivalently a positive element of the C* algebra) [63]. In fact, (CPM(n,m),v) is, in addition,
a bounded directed complete partial order (bdcpo). This means that it has a minimum element
(the 0 map) and any subset D that is bounded (there is an f ∈ CPM(n,m) such that for all
g ∈ D, g v f) and directed (for any f, g ∈ D, there exists an h ∈ D such that f v h and g v h)
has a least upper bound ⊔D.

As mentioned by [52], CPM(n,m) is unfortunately not quite a dcpo (directed complete partial
order), because there does exist unbounded directed subsets, and they do not have least upper
bounds. However, if it were a dcpo, we would be able to define infinite sums. Let C be an
infinite set and fi ∈ CPM(n,m) for all i ∈ C. Their infinite sum can be defined as

∑
i∈C

fi =
⊔

S⊆finC

∑
i∈S

fi =
⊔
D

where D = {∑i∈S fi | S ⊆ C ∧ S finite} is a indeed directed subset of CPM(n,m) under the
Löwner order.

To complete CPM(n,m) to a dcpo, Pagani, Selinger and Valiron propose to use theD-completion
of Zhao and Fan [74]. The construction itself is sketched in [52]. Instead, we content ourselves
with some of its properties. Given a partially ordered set (poset) P , its D-completion c(P)
has the following universal property: there is a canonical injection map ι : P → c(P) which is
Scott-continuous (i.e. preserving existing least upper bounds), and for every other dcpo Q and

102 5.2. Constructing the Quantum I/O Monad

Scott continuous map f : P → Q, there is a unique Scott-continuous g : c(P) → Q such that
the following commutes.

P c(P)

Q

ι

f
∃!g

In particular, if P is a bdcpo, then all the least upper bounds of the bounded directed subsets
will be preserved, and the only additional elements contained by c(P) are the elements ‘at
infinity’.

Finally, we can define the D-completed dcpo-enriched category CPM as the category with
the same objects as CPM, morphisms CPM(n,m) = c(CPM(n,m)), and all categorical
constructions are extended using the universal property of the D-completion. The definition of
the infinite indexed sum above is one example.

Completing CPM with infinite biproducts Now that we have infinite sums, we can
construct the infinite biproduct completion, CP∞. Its objects are indexed families of natural
numbers N , i.e. an index set IN along with a natural number dNi for each i ∈ IN . Morphisms
φ : N → M are exactly the matrices (φa,b)a∈IN ,b∈IM , where φa,b ∈ CPM(dNa , dMb). Composition
is then simply matrix composition, and identity is the diagonal matrix (idN)a,a′ = δa,a′ · iddNa .
Remark 5.2.1. It has been pointed out that a dcpo completion following Pagani et al. [52]
is ‘too powerful’ in a sense, for it allows for all infinite sums, and thus all infinite biproducts.
However, in our use case, we only need countable biproducts to express a biproduct indexed by
{in, out}∗. Thus, it is possible that an ω-cpo completion of the homsets along with a countable
biproduct completion – if well-behaved – would be more suitable. Noteworthy is that the rest of
the proof does not depend on the specific construction, which means that the reader can safely
ignore this subtlety.

CP∞ is additionally a biproduct compact closed category.

• Biproducts: Let S be a possibly infinite set and {N (i)}i∈S be a family of objects in CP∞.
Then, the biproduct P = ⊕

i∈S N
(i) is defined by an index set IP = ⋃

i∈S{i} × IN(i) ,
and dP(i,j) = dN

(i)
j . The projections projj and injections injj (j ∈ I) are defined by

projj(i,a),a′ = injja′,(i,a) = δj,iδa,a′id. The zero object can be defined by the empty index set
(the empty biproduct).

• Symmetric monoidal structure: The bifunctor ⊗ : CP∞ × CP∞ → CP∞ can be defined
simply by inheriting the tensor product from matrix algebras and making it distribute over
the free biproduct. Concretely, N⊗M is defined by IN⊗M = IN ×IM and dN⊗M

(a,b) = dNa ·dMb .
On morphisms, we define tensors component-wise, using the tensor product from CPM,
which is the tensor in CPM made compatible with the infinite elements from the D-
completion. The tensor unit is the object C (with IC = {∗} and dC∗ = 1). Finally, the

5. A Monadic Denotational Semantics 103

associativity, unit and symmetry natural isomorphisms are inherited from CPM and
defined component-wise.

• Compact closure: as we have a skeleton category, every object coincides with its dual:
N∗ = N . The unit and counit are defined component-wise.

Finally, we define a few useful objects.

• The qubit type qbit will correspond to the object qbit such that Iqbit = {∗} and dqbit
∗ = 2.

We write qbit⊗n to express the n-way tensor product of qbit, which corresponds to the
object such that Iqbit⊗n = {∗} and dqbit⊗n

∗ = 2n.

• The bit type bit will correspond to the object bit such that Ibit = {0, 1} and dbit
0 =

dqbit
1 = 1. It is isomorphic to C ⊕ C. We write bit⊗n to express the n-way tensor product

of bit, which corresponds to the object such that Ibit⊗n = [2n] and dbit⊗n

i = 1.

5.2.3 Explicit Definition in CP∞ and Properties

Now, we can proceed to explicitly define our monad T : CP∞ → CP∞.
Definition 5.2.2 (Quantum I/O monad). Let T : CP∞ → CP∞ be the functor defined by

T (X) =
⊕

σ∈{in,out}∗

Aux(σ) ⊗X.

It has the structure of a monad with ηX : X → T (X) , injε and µX : TTX → TX is defined by

(µX)(σ,σ′),σ′′ , δ(σ+σ′),σ′′id.

We can easily check that this forms a monad.
Remark 5.2.3. Rather deceptive is the fact that when working with this monad, both the
input and the output qubits appear as output wires. This is very useful because, this way, we
can determine the order in which inputs and outputs happen canonically by their index in the
biproduct. This does also mean that if we want to use the accumulated map, we would need to
bend all the input wires down using the cup (i.e. the evaluation map in the symmetric monoidal
closed structure of CP∞).

We can further prove the following interesting property:
Lemma 5.2.4. The following commutes for any σ ∈ {in, out}∗:

Aux(σ) ⊗X T (X)

Aux(σ) ⊗ T (Y) T (Y)

injσ

Aux(σ)⊗f f†

µ(σ,−),−

where (µX)(σ,−),− : Aux(σ)⊗T (X) → T (X) is the map defined by ((µX)(σ,−),−)σ′,σ′′ , (µX)(σ,σ′),σ′′.

104 5.2. Constructing the Quantum I/O Monad

Proof. We already know that this commutes when σ = ε, because we recover the definition of
the Kleisli extension f † = T (A) T (f)→ T (T (B)) µ→ T (B). In general, that this diagram commutes
can be derived explicitly. Let g = id ⊗ f ;µ(σ,−),−, h = injσ; f †, then:

g∗,σ′′ =
∑
σ′

(id ⊗ f)∗,σ′ · µ(σ,σ′),σ′′ =
∑
σ′
δσ+σ′,σ′′(id ⊗ f)∗,σ′

and

h∗,σ′′ =
∑
σ′

injσ∗,σ′ ; f †
σ′,σ′′

= f †
σ,σ′′

=
∑
σ1,σ2

(T (f))(σ,∗),(σ1,σ2);µ(σ1,σ2),σ′′

=
∑
σ1,σ2

δσ,σ1 · (id ⊗ f)∗,σ2 ; δσ1+σ2,σ′′

=
∑
σ2

δσ+σ2,σ′′(id ⊗ f)∗,σ2 .

Thus h = g. Note that we have treated X as a single object instead of an indexed family, which
is without loss of generality and simplifies the notation.

5.2.4 Denotational Semantics

We can now give the terms of I/O⊗QUANTUM a monadic denotational semantics by interpreting
it in KlopT .
Definition 5.2.5 (Monadic Semantics). The monadic semantics of terms from I/O⊗QUANTUM
is given as follows:

• A parameter context ∆ is interpreted as J∆K = qbit⊗|∆|,

• A computation context Γ = (x1 : n1...xk : nk) is interpreted as JΓK = ⊕k
i=1JniK, where

JnK = qbit⊗n.

• Every operation op : (p | m1...mk) is interpreted as JopK : JpK → T (⊕k
i=1JmiK), as in

fig. 5.1.

• Every term Γ | ∆ ` c is interpreted as JcK : J∆K → T (JΓK) in a standard way.

Perhaps the first thing to note is how deceptively simple and elegant the semantics appear. We
draw the reader’s attention to the definition of output and input. For the output, the map is
simply identity, but importantly, it no longer appears in the type of the resulting object T (C).
In other words, it becomes an open wire hidden under the monad T , and is no longer accessible
to the user. For the input, we use the cup to connect the input qubit on the left to the qubit
that is accessible to the program on the right. This corresponds exactly to the abstraction map
in the compact closed structure (see section 2.3.2.2). As we shall see later, when evaluating

5. A Monadic Denotational Semantics 105

JnewK : C → T (qbit) = 0 ; injε

JmeasureK : qbit → T (bit) =
〈

0
,

1
〉

; injε

JapplyUK : qbit⊗n → T (qbit⊗n) = U ; injε

JinK : C → T (qbit) = qbitin qbit; injin

JoutK : qbit → T (C) =

qbitout

qbit

; injout

Figure 5.1: Monadic semantics for operations

the denotation by coupling it with a concrete qubit stream, we will use the evaluation map to

connect the input wires to the actual inputs.

To understand the full power of these semantics, we explicitly characterise the terms inductively

defined by the typing rules. This will result in an induction principle for well-typed terms. Note

that we do so based on the new type system in definition 4.2.2 instead of the original one, for it

will be more convenient for later proofs.

Induction principle for JcK in the new type system. For each rule, we give a commutative dia-

gram, where the blue path gives the standard definition, and the red path gives the induction

principle.

Rule (new):
Γ | ∆, q ` c

Γ | ∆ ` new(q.c)

The morphism Jnew(q.c)K : J∆K → T (JΓK) can be formed according to the following commutative

106 5.2. Constructing the Quantum I/O Monad

diagram:

J∆ ⊗ qbitK

J∆K J∆K ⊗ T (qbit) T (J∆K ⊗ qbit) T JΓK

η=injε JcK
J∆K⊗new

J∆K⊗JnewK

Jnew(q.c)K

∼=
JcK†

where

new = 0 .

The top left triangle commutes by definition, and the right triangle commutes by property of
the Kleisli triple.

Rule (apply): Let U be the CP map corresponding to an n-dimensional unitary matrix.

Γ | π(∆,~b) ` c

Γ | π(∆,~a) ` applyU(~a,~b.c)

The morphism JapplyUK : Jπ(∆,~a)K → T (JΓK) is defined as follows:

Jπ(∆,~a)K

Jπ′′(∆)K ⊗ J~aK Jπ′′(∆)K ⊗ T (J~bK) T Jπ(∆,~b)K T JΓK

T (Jπ′′(∆)K ⊗ J~bK)

Jπ′′(∆)K ⊗ J~bK Jπ(∆,~b)K

π′

JapplyU (~a,~b.c)K

idJπ′′(∆)K⊗JapplyU K

Jπ′′(∆)K⊗U

∼=

JcK†

T ((π′)−1)

η=injε

(π′)−1

η=injε
JcK

where π′ is the permutation on π(∆,~a) qubits that moves all the qubits from ~a to the right
and leaves the rest intact, and π′′ is the permutation such that π′′(∆) is exactly π(∆,~a)
with all the qubits from ~a filtered out. Note that any other choice of π′ and π′′ such that
π′(π(∆,~a)) = (π′′(∆),~a) would be equivalent, as remarked under definition 4.2.9.

Rule (measure):
(Γ | ∆,∆′ ` ci)i=0,1

Γ | ∆, q,∆′ ` measure(q, c0, c1)

5. A Monadic Denotational Semantics 107

The morphism Jmeasure(q, c0, c1)K : J∆, q,∆′K → T (Γ) is defined as

J∆K ⊗ bit ⊗ J∆′K J∆,∆′K ⊕ J∆,∆′K T JΓK

J∆, q,∆′K

J∆K ⊗ T (bit) ⊗ J∆′K T (J∆,∆′K ⊕ J∆,∆′K)

∼= [Jc0K,Jc1K]

η=injε

J∆K⊗〈measure0,measure1〉⊗J∆′K

J∆K⊗JmeasureK⊗J∆′K

∼=

[Jc0K,Jc1K]†

where

measurei = i

for i = 0, 1.

If we represent it explicitly, we get exactly the notion of classical control that we would expect.

Jmeasure(q, c0, c1)Kσ,x =
∑
i=0,1

JciKσ,x

i

Rule (in):
Γ | ∆, q ` c

Γ | ∆ ` in(q.c)

The morphism Jin(q.c)K : J∆K → T JΓK can be defined as follows:

J∆K J∆K ⊗ qbitin ⊗ qbit

J∆K ⊗ T (qbit) qbitin ⊗ J∆K ⊗ qbit

T J∆, qK

T JΓK qbitin ⊗ T JΓK

J∆K⊗in

J∆K⊗JinK

Jin(q.c)K

∼=

∼=
injin

qbitin⊗JcK

JcK†

(µJΓK)(in,−),−

where

in = qbitin qbit
.

108 5.2. Constructing the Quantum I/O Monad

In other words, if we use the matrix notation, we have that

Jin(q.c)Kσ,x =

JcKσ′,x

JnxK
Aux(σ′)qbitin

if ∃σ′. σ = in + σ′,

0 otherwise.

Rule (out):
Γ | ∆,∆′ ` c

Γ | ∆, q,∆′ ` out(q, c)
The morphism Jout(q, c)K : J∆, q,∆′K → T JΓK can then be given as:

J∆K ⊗ qbit ⊗ J∆′K J∆K ⊗ qbitout ⊗ J∆′K

J∆K ⊗ T (C) ⊗ J∆′K qbitout ⊗ J∆,∆′K

T J∆,∆′K

T JΓK qbitout ⊗ T JΓK

J∆K⊗out⊗J∆′K

J∆K⊗JoutK⊗J∆′K

Jout(q,c)K

∼=

∼= injout

qbitout⊗JcK

JcK†

(µJΓK)(out,−),−

where

out =

qbitout

qbit

.

Explicitly, this can be written as

Jout(q, c)Kσ,x =

JcKσ′,x

qbit

qbitout

J∆K
J∆′K

if ∃σ′. σ = out + σ′,

0 otherwise.

Rule (var): Finally we look at the base case. Assuming that

Γ, x : n,Γ′ | π(~a) ` x(~a)

5. A Monadic Denotational Semantics 109

we can get its semantics JΓ, x : n,Γ′ | π(~a) ` x(~a)K : JnK → T JΓ, x : n,Γ′K as

JnK JnK JΓK

T JΓK

π−1

JΓ′′ | π(~a)`x(~a)K

injx

η=injε

where Γ′′ = Γ, x : n,Γ′.

5.3 Results with respect to the Operational Semantics

We are now ready to relate our operational and denotational semantics. To do so, we will first
define how to run the program with a concrete stream, i.e. a notion of ‘parallel composition’
with a concrete stream. Concretely, let Γ | ∆ ` c be an arbitrary program. For every stream
t ∈ Stream(X0) where X0 ∈ CP and every initial stream state σI ∈ {in, out}∗, we will define a
morphism Run(c, t, σI)σ,x : J∆K⊗qbit⊗q(σI) → JnxK⊗qbit⊗q(σI +σ) for every σ ∈ {in, out}∗,
(x : nx) ∈ Γ. Note that if a path P is such that σ(P) = σ and xP = x, then JP Kt,σI will be
exactly of that same type!

Further, recall that our monad seems to classify the different reduction paths of a program by
trace σ and continuation variable x, and in the final object T JΓK, all corresponding reduction
sequences seem to have their end states added together, weighted by their respective probabilities.
It turns out that this is exactly the case, and it is our main result in this section:
Theorem 5.3.1 (Sum of Paths and Runs Coincide). Let Γ | ∆ ` c be a program. Then, for all
X0 ∈ CP, stream t = (q, T) ∈ Stream(X0), initial state σI ∈ {in, out}∗, path trace σ ∈ {in, out}∗

and computation variable (x : nx ∈ Γ),

Run(c, t, σI)σ,x =
∑

P∈Path(c)
xP=x
σ(P)=σ

JP Kt,σI .

Proof Sketch. Induction over the structure of c, using all the induction principles previously
developed.

And from this result, we can derive adequacy and full abstraction using previous results in
section 4.3.5.

5.3.1 Preliminaries

To define Run, we start by defining a gadget Connect, which takes the I/O output Aux(σ) of the
component of T (JΓK) at σ, x, and connects them to the concrete stream according to the trace
σ.

110 5.3. Results with respect to the Operational Semantics

ConnecttσI ,(in+σ) =

qbitin

T (σI , in)

ConnectσI+in,σ

Aux(σ)
qbit q(σI)

ConnecttσI ,(out+σ) =

qbitout

T (σI , out)

ConnectσI+out,σ

Aux(σ)
q(σI)

qbit
ConnecttσI ,ε = Aux(ε) ⊗ qbit ⊗ q(σI)

∼=→ qbit ⊗ q(σI) (because Aux(ε) = C)

Figure 5.2: Definition of the Connect gadget

Definition 5.3.2 (The Connect gadget). Let t = (q, T) ∈ Stream(X0) be a stream, σI ∈ traceset

be an initial stream state, and σ be the trace of the path in question, we define ConnecttσI ,σ as a
morphism in Aux(σ) ⊗ qbit ⊗ q(σI) → qbit ⊗ q(σI + σ) inductively over the structure of σ in
fig. 5.2.

Note that, as promised, when dealing with an input, we are applying the cup to bend it back
and feed it with the actual qubit input from the stream.
Definition 5.3.3 (Parallel Composition with Streams using Run). Let Γ | ∆ ` c. Let t ∈
Stream(X0) be a stream, σI ∈ {in, out}∗ be an initial state, and further let σ ∈ {in, out}∗ and
(x : nx) ∈ Γ. Then, Run(c, t, σI)σ,x : J∆K ⊗ qbit ⊗ q(σI) → JnxK ⊗ qbit ⊗ q(σI + σ) is defined as
follows:

Run(c, t, σI)σ,x ,

JcKσ,x

J∆K

ConnecttσI ,σ

qbit q(σI)

JnxK qbit q(σI + σ)

Aux(σ)

5.3.2 Proof of Main Result

Proof of theorem 5.3.1. By induction over the structure of c.

Case (var):

Γ, x : n,Γ′ | π(~a) ` x(~a)

5. A Monadic Denotational Semantics 111

We know from the definition of Run and the induction principle of JcK that

Run(c, t, σI)σ,y = δσ,εδx,y(π−1 ⊗ idqbit⊗q(σI)).

If we let P0 ∈ Path (c) be the unique element of Path (c), we know that xP0 = x and σ(P0) = ε,
and JP Kt,σI = (π−1 ⊗ idqbit⊗q(σI)). Thus LHS = RHS follows.

Case (new):
Γ | ∆, q ` c

Γ | ∆ ` new(q.c)
We know that Jnew(q.c)Kσ,x is defined by

Jnew(q.c)Kσ,x = JσK ⊗ 0 ; JcKσ,x

and thus, we get

LHS def=

JcKσ,x

J∆K

ConnecttσI ,σ

qbit q(σI)

JnxK qbit q(σI + σ)

0

def of Run= Run(c, t, σI)σ,x

0
J∆K

(IH)=
∑

P∈Path(c)
xP=x
σ(P)=σ

JP Kt,σI

0
J∆K

def of J·K and Path (new(q.c))=
∑

P ′∈Path(new(q.c))
xP ′ =x
σ(P ′)=σ

JP ′Kt,σ = RHS

Case (apply):
Γ | π(∆,~b) ` c

Γ | π(∆,~a) ` applyU(~a,~b.c)
This case is analogous to the previous case, with a deterministic transition and without any
addition to the trace.

112 5.3. Results with respect to the Operational Semantics

Case (measure):
(Γ | ∆,∆′ ` ci)i=0,1

Γ | ∆, q,∆′ ` measure(q, c0, c1)

We have

LHS ind. principle=
∑
i=0,1

JciKσ,x

J∆K

ConnecttσI ,σ

qbit q(σI)

JnxK qbit q(σI + σ)

J∆′K

i

def of Run=
∑
i=0,1

Run(ci, t, σI)σ,x

J∆K
J∆′K

i

(IH)=
∑
i=0,1

∑
P∈Path(ci)
xP=x
σ(P)=σ

JP Kt,σI

J∆K J∆′K

i

def of J·K for paths=
∑
i=0,1

∑
P∈Path(ci)
xP=x
σ(P)=σ

Jmeasure(q, c0, c1) →(i) P Kt,σI

def of Path (measure(q, c0, c1))=
∑

P ′∈Path(measure(q,c0,c1))
xP ′ =x
σ(P ′)=σ

JP Kt,σI = RHS

Case (in):
Γ | ∆, q ` c

Γ | ∆ ` in(q.c)

For a trace of the form in + σ we first expand the definitions:

LHS def=

Jin(q.c)Kin+σ,x

J∆K

ConnecttσI ,in+σ

qbit q(σI)

JnxK qbit q(σI + in + σ)

5. A Monadic Denotational Semantics 113

def (J·K and Connect)=

JcKσ,x

J∆K

ConnecttσI+in,σ

qbit q(σI)

JnxK qbit q(σI + in + σ)

qbitin

T (σI , in)

q(σI + in)

where the blue dashed boxes correspond to those in the previous step. We remark that the pink

box corresponds exactly to Run(c, t, σI + in)σ,x, we get

LHS def of Run= Run(c, t, σI + in)σ,x

J∆K

T (σI , in)

qbit q(σI)

(IH)=
∑

P∈Path(c)
xP=x
σ(P)=σ

JP Kt,σI+in

J∆K

T (σI , in)

qbit q(σI)
def of Jin(q.c) → P K=

∑
P∈Path(c)
xP=x
σ(P)=σ

Jin(q.c) → P Kt,σI
def of Path (in(q.c))=

∑
P ′∈Path(in(q.c))

xP ′ =x
σ(P ′)=σ

JP ′Kt,σI

= RHS

Otherwise if the trace σ does not start with in, then both the left and right hand side will

be 0: the LHS gives 0 because J∈ (q.c)Kσ,x will be 0, and the RHS gives 0 there is no path in

Path (in(q.c)) such that its trace σ(P) does not start with in.

Case (out):
Γ | ∆,∆′ ` c

Γ | ∆, q,∆′ ` out(q, c)

This case is analogous to the (in) case. We include it for the sake of completeness. When the

trace is not of the form out + σ, then both sides give 0 with the same reasoning as above. When

114 5.3. Results with respect to the Operational Semantics

it is, we get

LHS def=

JcKσ,x

J∆K

ConnecttσI+in,σ

qbit q(σI)

JnxK qbit q(σI + out + σ)

T (σI , out)

q(σI + out)

J∆′K

qbitout

def of Run= Run(c, t, σI + out)σ,x

J∆K

T (σI , out)

qbit q(σI)
J∆K

qbitout

(IH)=
∑

P∈Path(c)
xP=x
σ(P)=σ

JP Kt,σI+out

J∆K

T (σI , out)

qbit q(σI)
J∆K

qbitout

def of Jout(q, c) → P Kt,σI and Path (out(q, c))=
∑

P∈Path(out(q,c))
xP=x
σ(P)=σ

JP Kt,σI

= RHS

5.3.3 Corollaries: Adequacy and Full Abstraction

This result is significant, because from it we can easily derive adequacy and full abstraction
using the results from the previous sections.
Theorem 5.3.4 (Adequacy). Let Γ | ∆ ` c, c′. Then, JcK = Jc′K implies c 'qu c

′.

Proof. Assume JcK = Jc′K. Let t ∈ Stream(X0) be an arbitrary stream and σI be the initial stream
state, and let σ ∈ {in, out}∗, x : nx ∈ Γ. Then, by definition we know that Run(c, t, σI)σ,x =
Run(c′, t, σI)σ,x. By theorem 5.3.1, it follows that

∑
P∈Path(c)
xP=x
σ(P)=σ

JP Kt,σI =
∑

P∈Path(c′)
xP=x
σ(P)=σ

JP Kt,σI

5. A Monadic Denotational Semantics 115

from which it follows by corollary 4.3.21 that
∑

π:〈ρI ,σI ,c〉→∗
〈
ρf ,σI+σ,skipx

〉Pr(π) · ρ̃f =
∑

π:〈ρI ,σI ,c′〉→∗
〈
ρf ,σI+σ,skipx

〉Pr(π) · ρ̃f

for any ρI :t ∆, σI . We can now derive that

∑
ρf

Pr(〈ρI , σI , c〉 →∗ 〈ρf , σI + σ, skipx〉) · ρ̃f

=
∑
ρf

Pr(〈ρI , σI , c′〉 →∗ 〈ρf , σI + σ, skipx〉) · ρ̃f

which is exactly c 'qu c
′.

For full abstraction, we need the following additional fact:
Lemma 5.3.5. For any finite dimensional1 system of A,B ∈ CP∞ (i.e. for any system in
CP), let f, g : A → B. Then f = g ⇐⇒ ∀ψ : C → A.f ◦ ψ = g ◦ ψ.

Proof Sketch. One direction is trivial. For the converse, we have to use the fact that the positive
elements given by morphisms ψ : C → A span the entire space of A. Because we are working
with finite dimensions, we can start with matrix algebras A = Mn(C), which is an object of the
form IA = {∗} and dA∗ = n.

And indeed, the CP maps in C → Mn(C) do form a basis: the explicit construction is given in
Theorem 6.24 of [22]. This easily extends to finite biproducts of matrix algebras ⊕i Mki(C)
(objects with IA = [n] and dAi = ki), because its basis can be easily constructed from its
components.

Theorem 5.3.6 (Full Abstraction). Let Γ | ∆ ` c, c′. Then, c 'qu c
′ implies JcK = Jc′K.

Proof. By doing the reverse of the reasoning above (possible because we had only done a chain
of equalities), we obtain from c 'qu c

′ that

Run(c, t, σI)σ,x ◦ ρI = Run(c′, t, σI)σ,x ◦ ρI

for all t ∈ Stream(X0), σI , σ ∈ {in, out}∗, x : nx ∈ Γ, ρI : I → J∆K ⊗ qbit ⊗ q(σI) where ρI is
normalised. From the above lemma, we then obtain that

Run(c, t, σI)σ,x = Run(c′, t, σI)σ,x.

where, of course, the normalisation of the ρI ’s is irrelevant in forming a basis. Now, we wish to
show that this implies that JcK = Jc′K. This is informally the case because we can instantiate the
stream as a trivial stream that stores all the outputs when receiving them, as well as all inputs,

1Only studying the finite-dimensional case is a simplification that suffices for our purposes.

116 5.4. Results with respect to the PAT

by using a Bell state. Formally, we define q(σ) = qbit ⊗ Aux(σ). Intuitively, this additional
qubit on the right will be at all times entangled to the qubit, which will be the next input to the
program. We call it the ‘handle’ of the next input qubit. Then, when such an input happens,
we store this handle as the rightmost qubit of our stream state and create another entangled
pair of qubits, using one as the next input and one as the handle. More formally, we have that
for all σ,

T (σ, in) =
in

in handle Aux(σ + in)

in which has just been used
Aux(σ)

where we have ignored the normalising factor for the Bell state, necessary to make this map
trace preserving. The output case, on the other hand, is trivial. We can just define T (σ, out) =
idqbit⊗q(σ)⊗qbit, which automatically stores the output as the rightmost qubit of the state.

Now, consider the following morphism, where t = (q, T) is the stream defined above.

Run(c, t, ε)σ,x

J∆K qbit qbit

qbit qbit Aux(σ)JnxK

By a simple induction, one can easily show that it will be equal to exactly

JcKσ,x

J∆K

JnxK qbit qbit Aux(σ)

.

Finally, our premises imply that the instantiation of this diagram with c and c′ are equal. Thus,
it follows trivially that JcK = Jc′K, just as required.

5.4 Results with respect to the PAT

From full abstraction, one can then easily show that C ∈ KlopT forms a model of I/O⊗QUANTUM.

5. A Monadic Denotational Semantics 117

Theorem 5.4.1 (Soundness). The following implication holds:

Γ | ∆ ` c = c′ =⇒ JcK = Jc′K.

Proof. This simply follows from the soundness result of the quantum equivalence 'qu, given in
theorem 4.3.25, and full abstraction given in theorem 5.3.6.

Corollary 5.4.2 (Model). The object C forms a model of PAT in the category KlopT .

Proof. The category C = KlopT has products inherited from the biproduct in CP∞. Moreover, it
does indeed have the structure of a Bij action • : Bij × C → C whereby p •X = qbit⊗p ⊗X.
Finally, we can indeed interpret each term Γ | ∆ ` c in C as JcK, and the soundness theorem
above shows that this interpretation respects the equational theory.

When it comes to completeness, we conjecture it to hold.
Conjecture 5.4.3. The converse of theorem 5.4.1 holds.

Indeed, this statement being true will be unsurprising, for we constructed our monad T :
CP∞ → CP∞ as the free monad corresponding to the I/O theory on a category that fully
captures the QUANTUM theory. This is exactly how one would construct a monad for a tensor
of algebraic theories because, in general, Mod(L ⊗ L′, C) = Mod(L,Mod(L′, C)). That this
conjecture does not hold could conceivably be due to two potential reasons: either the above
equality does not hold, which means that the PAT framework presented in [67] is somehow not
well formed, which is unlikely; or CP∞ has additional structure which is not axiomatised by
the equational theory. The interesting question, in the latter case, would then be whether we
could extend our theory to capture these additional equalities. We shall leave this question to
future work.

6
Conclusion

6.1 Summary

This dissertation achieved two things.

First, we proved the existence of sums and tensors for the FinProd doctrine [Ctx0,Set] enriched
Lawvere theories presented by parameterised algebraic theories specified in Staton’s framework
[67]. The well-formedness of such standard constructions provides evidence that the framework
in question is well-behaved.

Second, we proposed the first algebraic theory for qubit quantum computing and classically
controlled qubit quantum communication as a tensor in the above sense: I/O ⊗ QUANTUM. We
studied the theory by giving two complementary models: a quantum stream-based operational
semantics along with a program equivalence compatible with quantum theory and a monadic
denotational semantics based on a standard I/O monad taken on CP∞, the category of matrix
algebras and CP maps freely completed with infinite biproducts [52]. We further showed that the
denotational semantics is adequate and fully complete with respect to the operational semantics.
The results are summarised in table 6.1.

=⇒ ? c = c′ c 'qu c
′ JcK = Jc′K

c = c′ X X(Theorem 4.3.25) X(Corollary 5.4.2)
c 'qu c

′ ? (Conjecture 5.4.3) X X(Theorem 5.3.6)
JcK = Jc′K ? (Conjecture 5.4.3) X(Theorem 5.3.4) X

Table 6.1: Summary of Results in Chapters 4 and 5. Guide to read this table: whether we know that
A implies B is indicated in the cell on row A, column B.

119

120 6.2. Future Work

6.2 Future Work

The immediate next step is to prove full completeness of the quantum I/O monad we developed
with respect to I/O ⊗ QUANTUM (conjecture 5.4.3). This is crucial, for it is the only missing
piece to the puzzle.

It would also be interesting to understand how this work relates mathematically to various other
related lines of work. Questions we would like to ask include:

• How does the quantum I/O monad we constructed relate to higher order causal quantum
processes as defined by Kissinger and Uijlen [34]? Can I model the causal order specified
by the I/O trace σ ∈ {in, out}∗ within that framework?

• It was mentioned previously that our object of study can be seen as the local sublanguage
of quantum process calculi. Another question to ask would thus be: how does the
I/O⊗QUANTUM theory relate to the notions of bisimilarity proposed for various quantum
process calculi?

Additionally, there are potentially interesting extensions of variations of the theory we should
consider.

• There have been studies in quantum information theory about quantum controlled I/O
[35, 2]. How would such a mechanism look like in the context of a programming language?
What would happen if we allowed it in our theory?

• Another direction of extensions would be to try to move closer to giving an algebraic theory
for quantum concurrency instead of just communication. This will involve extending the
algebraic theory to allow for multiple channels, non-determinism, and parallelism, the
latter two of which are known to have subtle interactions with quantum effects. Modelling
parallelism is an especially difficult question because the || operator is not algebraic
and, therefore, cannot be straightforwardly incorporated in an algebraic theory as an
operation [66, 25]. While there do exist workarounds, such as in Abadi et al.’s work on
cooperative threading [1], they remain an unsatisfactory solution, especially for modelling
process-calculus-style parallel composition.

Finally, in the literature of algebraic effects, while models characterise the effectful computation,
comodels [57] and their generalisations (‘runners’ [4]) specify the environment in which those
computations are run. Thus, it is potentially interesting to look into the structure of the
quantum stream we defined to see if it corresponds to a notion of a comodel. Then, we could
potentially achieve a notion of parallelism if we could instantiate comodels with programs
satisfying certain conditions (e.g. its I/O should be complementary to the I/O calls from the
other program).

References

[1] Martín Abadi and Gordon D. Plotkin. “A Model of Cooperative Threads”. In: Log. Methods
Comput. Sci. 6.4 (2010). doi: 10.2168/LMCS-6(4:2)2010. url:
https://doi.org/10.2168/LMCS-6(4:2)2010.

[2] Alastair A. Abbott et al. “Communication through coherent control of quantum channels”. In:
Quantum 4 (Sept. 2020), p. 333. issn: 2521-327X. doi: 10.22331/q-2020-09-24-333. url:
http://dx.doi.org/10.22331/q-2020-09-24-333.

[3] Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. 2007. arXiv:
quant-ph/0402130 [quant-ph]. url: https://arxiv.org/abs/quant-ph/0402130.

[4] Danel Ahman and Andrej Bauer. “Runners in Action”. In: Programming Languages and Systems.
Ed. by Peter Müller. Cham: Springer International Publishing, 2020, pp. 29–55. isbn:
978-3-030-44914-8.

[5] Thorsten Altenkirch and Alexander S. Green. “The Quantum IO Monad”. In: Semantic
Techniques in Quantum Computation. Ed. by Simon Gay and IanEditors Mackie. Cambridge
University Press, 2009, pp. 173–205.

[6] S.O. Anderson and A.J. Power. “A representable approach to finite nondeterminism”. In:
Theoretical Computer Science 177.1 (1997), pp. 3–25. issn: 0304-3975. doi:
https://doi.org/10.1016/S0304-3975(96)00232-0. url:
https://www.sciencedirect.com/science/article/pii/S0304397596002320.

[7] Miriam Backens and Aleks Kissinger. “ZH: A Complete Graphical Calculus for Quantum
Computations Involving Classical Non-linearity”. In: Electronic Proceedings in Theoretical
Computer Science 287 (Jan. 2019), pp. 23–42. issn: 2075-2180. doi: 10.4204/eptcs.287.2.
url: http://dx.doi.org/10.4204/EPTCS.287.2.

[8] Andrej Bauer. What is algebraic about algebraic effects and handlers? 2019. arXiv: 1807.05923
[cs.LO]. url: https://arxiv.org/abs/1807.05923.

[9] Charles H. Bennett and Gilles Brassard. “Quantum cryptography: Public key distribution and
coin tossing”. In: Theoretical Computer Science 560 (2014). Theoretical Aspects of Quantum
Cryptography – celebrating 30 years of BB84, pp. 7–11. issn: 0304-3975. doi:
https://doi.org/10.1016/j.tcs.2014.05.025. url:
https://www.sciencedirect.com/science/article/pii/S0304397514004241.

[10] Charles H. Bennett et al. “Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels”. In: Phys. Rev. Lett. 70 (13 Mar. 1993), pp. 1895–1899. doi:
10.1103/PhysRevLett.70.1895. url:
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895.

[11] Benjamin Bichsel et al. “Silq: a high-level quantum language with safe uncomputation and
intuitive semantics”. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI 2020. London, UK: Association for Computing
Machinery, 2020, pp. 286–300. isbn: 9781450376136. doi: 10.1145/3385412.3386007. url:
https://doi.org/10.1145/3385412.3386007.

[12] Marcello Caleffi et al. “Distributed quantum computing: A survey”. In: Computer Networks 254
(Dec. 2024), p. 110672. issn: 1389-1286. doi: 10.1016/j.comnet.2024.110672. url:
http://dx.doi.org/10.1016/j.comnet.2024.110672.

121

https://doi.org/10.2168/LMCS-6(4:2)2010
https://doi.org/10.2168/LMCS-6(4:2)2010
https://doi.org/10.22331/q-2020-09-24-333
http://dx.doi.org/10.22331/q-2020-09-24-333
https://arxiv.org/abs/quant-ph/0402130
https://arxiv.org/abs/quant-ph/0402130
https://doi.org/https://doi.org/10.1016/S0304-3975(96)00232-0
https://www.sciencedirect.com/science/article/pii/S0304397596002320
https://doi.org/10.4204/eptcs.287.2
http://dx.doi.org/10.4204/EPTCS.287.2
https://arxiv.org/abs/1807.05923
https://arxiv.org/abs/1807.05923
https://arxiv.org/abs/1807.05923
https://doi.org/https://doi.org/10.1016/j.tcs.2014.05.025
https://www.sciencedirect.com/science/article/pii/S0304397514004241
https://doi.org/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1016/j.comnet.2024.110672
http://dx.doi.org/10.1016/j.comnet.2024.110672

122 References

[13] Matteo Capucci and Bruno Gavranovi. Actegories for the Working Amthematician. 2023. arXiv:
2203.16351 [math.CT]. url: https://arxiv.org/abs/2203.16351.

[14] Jacques Carette et al. “With a Few Square Roots, Quantum Computing Is as Easy as Pi”. In:
Proceedings of the ACM on Programming Languages 8.POPL (Jan. 2024), pp. 546–574. issn:
2475-1421. doi: 10.1145/3632861. url: http://dx.doi.org/10.1145/3632861.

[15] Pietro Cenciarelli and Eugenio Moggi. “A syntactic approach to modularity in denotational
semantics”. In: CTCS 1993 (1993).

[16] Lorenzo Ceragioli et al. “A Coalgebraic Model of Quantum Bisimulation”. In: ().
[17] Lorenzo Ceragioli et al. “Quantum Bisimilarity via Barbs and Contexts: Curbing the Power of

Non-deterministic Observers”. In: Proc. ACM Program. Lang. 8.POPL (Jan. 2024). doi:
10.1145/3632885. url: https://doi.org/10.1145/3632885.

[18] G. Chiribella, G. M. D’ Ariano, and P. Perinotti. “Quantum Circuit Architecture”. In: Physical
Review Letters 101.6 (Aug. 2008). issn: 1079-7114. doi: 10.1103/physrevlett.101.060401.
url: http://dx.doi.org/10.1103/PhysRevLett.101.060401.

[19] Kenta Cho. “Semantics for a Quantum Programming Language by Operator Algebras”. In: New
Generation Computing 34.1 (2016), pp. 25–68. doi: 10.1007/s00354-016-0204-3. url:
https://doi.org/10.1007/s00354-016-0204-3.

[20] Bob Coecke and Ross Duncan. “Interacting Quantum Observables”. In: Automata, Languages
and Programming. Ed. by Luca Aceto et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 298–310. isbn: 978-3-540-70583-3.

[21] Bob Coecke and Ross Duncan. “Interacting quantum observables: categorical algebra and
diagrammatics”. In: New Journal of Physics 13.4 (Apr. 2011), p. 043016. doi:
10.1088/1367-2630/13/4/043016. url:
https://dx.doi.org/10.1088/1367-2630/13/4/043016.

[22] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

[23] Bob Coecke, Eric Oliver Paquette, and Dusko Pavlovic. Classical and quantum structuralism.
2009. arXiv: 0904.1997 [quant-ph]. url: https://arxiv.org/abs/0904.1997.

[24] Simon Gay and Rajagopal Nagarajan. Communicating Quantum Processes. 2004. arXiv:
quant-ph/0409052 [quant-ph]. url: https://arxiv.org/abs/quant-ph/0409052.

[25] Rob van Glabbeek and Gordon Plotkin. “On CSP and the Algebraic Theory of Effects”. In:
Reflections on the Work of C.A.R. Hoare. Springer London, 2010, pp. 333–369. isbn:
9781848829121. doi: 10.1007/978-1-84882-912-1_15. url:
http://dx.doi.org/10.1007/978-1-84882-912-1_15.

[26] Alexander S. Green et al. “Quipper: A Scalable Quantum Programming Language”. In: CoRR
abs/1304.3390 (2013). arXiv: 1304.3390. url: http://arxiv.org/abs/1304.3390.

[27] Amar Hadzihasanovic. A Diagrammatic Axiomatisation for Qubit Entanglement. 2015. arXiv:
1501.07082 [cs.LO]. url: https://arxiv.org/abs/1501.07082.

[28] Chris Heunen and Jamie Vicary. Categories for Quantum Theory: An Introduction. Oxford
University Press, Nov. 2019. isbn: 9780198739623. doi:
10.1093/oso/9780198739623.001.0001. eprint:
https://academic.oup.com/book/43710/book-pdf/50991591/9780191060069_web.pdf.
url: https://doi.org/10.1093/oso/9780198739623.001.0001.

[29] C. A. R. Hoare. “Communicating sequential processes”. In: Commun. ACM 21.8 (Aug. 1978),
pp. 666–677. issn: 0001-0782. doi: 10.1145/359576.359585. url:
https://doi.org/10.1145/359576.359585.

[30] Mathieu Huot and Sam Staton. “Quantum channels as a categorical completion”. In: Proceedings
of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS ’19. Vancouver,
Canada: IEEE Press, 2021.

https://arxiv.org/abs/2203.16351
https://arxiv.org/abs/2203.16351
https://doi.org/10.1145/3632861
http://dx.doi.org/10.1145/3632861
https://doi.org/10.1145/3632885
https://doi.org/10.1145/3632885
https://doi.org/10.1103/physrevlett.101.060401
http://dx.doi.org/10.1103/PhysRevLett.101.060401
https://doi.org/10.1007/s00354-016-0204-3
https://doi.org/10.1007/s00354-016-0204-3
https://doi.org/10.1088/1367-2630/13/4/043016
https://dx.doi.org/10.1088/1367-2630/13/4/043016
https://arxiv.org/abs/0904.1997
https://arxiv.org/abs/0904.1997
https://arxiv.org/abs/quant-ph/0409052
https://arxiv.org/abs/quant-ph/0409052
https://doi.org/10.1007/978-1-84882-912-1_15
http://dx.doi.org/10.1007/978-1-84882-912-1_15
https://arxiv.org/abs/1304.3390
http://arxiv.org/abs/1304.3390
https://arxiv.org/abs/1501.07082
https://arxiv.org/abs/1501.07082
https://doi.org/10.1093/oso/9780198739623.001.0001
https://academic.oup.com/book/43710/book-pdf/50991591/9780191060069_web.pdf
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585

References 123

[31] Martin Hyland, Gordon Plotkin, and John Power. “Combining effects: Sum and tensor”. In:
Theoretical Computer Science 357.1 (2006). Clifford Lectures and the Mathematical Foundations
of Programming Semantics, pp. 70–99. issn: 0304-3975. doi:
https://doi.org/10.1016/j.tcs.2006.03.013. url:
https://www.sciencedirect.com/science/article/pii/S0304397506002659.

[32] Martin Hyland and John Power. “The Category Theoretic Understanding of Universal Algebra:
Lawvere Theories and Monads”. In: Electronic Notes in Theoretical Computer Science 172
(2007). Computation, Meaning, and Logic: Articles dedicated to Gordon Plotkin, pp. 437–458.
issn: 1571-0661. doi: https://doi.org/10.1016/j.entcs.2007.02.019. url:
https://www.sciencedirect.com/science/article/pii/S1571066107000874.

[33] Geun Bin IM and G.M. Kelly. “A universal property of the convolution monoidal structure”. In:
Journal of Pure and Applied Algebra 43.1 (1986), pp. 75–88. issn: 0022-4049. doi:
https://doi.org/10.1016/0022-4049(86)90005-8. url:
https://www.sciencedirect.com/science/article/pii/0022404986900058.

[34] Aleks Kissinger and Sander Uijlen. “A categorical semantics for causal structure”. In: Logical
Methods in Computer Science 15 (2019).

[35] Hlér Kristjánsson et al. “Resource theories of communication”. In: New Journal of Physics 22.7
(July 2020), p. 073014. doi: 10.1088/1367-2630/ab8ef7. url:
https://dx.doi.org/10.1088/1367-2630/ab8ef7.

[36] Marie Lalire and Philippe Jorrand. A Process Algebraic Approach to Concurrent and Distributed
Quantum Computation: Operational Semantics. 2004. arXiv: quant-ph/0407005 [quant-ph].
url: https://arxiv.org/abs/quant-ph/0407005.

[37] F. William Lawvere. “Functorial Semantics of Algebraic Theories”. In: Proceedings of the
National Academy of Sciences of the United States of America 50.5 (1963), pp. 869–872. issn:
00278424, 10916490. url: http://www.jstor.org/stable/71935 (visited on 08/15/2024).

[38] Saunders MacLane. Categories for the Working Mathematician. Graduate Texts in Mathematics,
Vol. 5. New York: Springer-Verlag, 1971, pp. ix+262.

[39] R. Milner. A Calculus of Communicating Systems. Berlin, Heidelberg: Springer-Verlag, 1982.
isbn: 0387102353.

[40] Robin Milner, Joachim Parrow, and David Walker. “A calculus of mobile processes, I”. In:
Information and Computation 100.1 (1992), pp. 1–40. issn: 0890-5401. doi:
https://doi.org/10.1016/0890-5401(92)90008-4. url:
https://www.sciencedirect.com/science/article/pii/0890540192900084.

[41] Eugenio Moggi. “Notions of computation and monads”. In: Information and Computation 93.1
(1991). Selections from 1989 IEEE Symposium on Logic in Computer Science, pp. 55–92. issn:
0890-5401. doi: https://doi.org/10.1016/0890-5401(91)90052-4. url:
https://www.sciencedirect.com/science/article/pii/0890540191900524.

[42] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2010.

[43] nLab authors. closed monoidal category.
https://ncatlab.org/nlab/show/closed+monoidal+category. Revision 56. Aug. 2024.

[44] nLab authors. closed monoidal structure on presheaves.
https://ncatlab.org/nlab/show/closed+monoidal+structure+on+presheaves. Revision
21. Aug. 2024.

[45] nLab authors. Day convolution. https://ncatlab.org/nlab/show/Day+convolution.
Revision 80. Aug. 2024.

[46] nLab authors. deferred measurement principle.
https://ncatlab.org/nlab/show/deferred+measurement+principle. Revision 13. Aug.
2024.

https://doi.org/https://doi.org/10.1016/j.tcs.2006.03.013
https://www.sciencedirect.com/science/article/pii/S0304397506002659
https://doi.org/https://doi.org/10.1016/j.entcs.2007.02.019
https://www.sciencedirect.com/science/article/pii/S1571066107000874
https://doi.org/https://doi.org/10.1016/0022-4049(86)90005-8
https://www.sciencedirect.com/science/article/pii/0022404986900058
https://doi.org/10.1088/1367-2630/ab8ef7
https://dx.doi.org/10.1088/1367-2630/ab8ef7
https://arxiv.org/abs/quant-ph/0407005
https://arxiv.org/abs/quant-ph/0407005
http://www.jstor.org/stable/71935
https://doi.org/https://doi.org/10.1016/0890-5401(92)90008-4
https://www.sciencedirect.com/science/article/pii/0890540192900084
https://doi.org/https://doi.org/10.1016/0890-5401(91)90052-4
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://ncatlab.org/nlab/show/closed+monoidal+category
https://ncatlab.org/nlab/revision/closed+monoidal+category/56
https://ncatlab.org/nlab/show/closed+monoidal+structure+on+presheaves
https://ncatlab.org/nlab/revision/closed+monoidal+structure+on+presheaves/21
https://ncatlab.org/nlab/revision/closed+monoidal+structure+on+presheaves/21
https://ncatlab.org/nlab/show/Day+convolution
https://ncatlab.org/nlab/revision/Day+convolution/80
https://ncatlab.org/nlab/show/deferred+measurement+principle
https://ncatlab.org/nlab/revision/deferred+measurement+principle/13

124 References

[47] nLab authors. Eckmann-Hilton argument.
https://ncatlab.org/nlab/show/Eckmann-Hilton+argument. Revision 37. Aug. 2024.

[48] nLab authors. free cocompletion. https://ncatlab.org/nlab/show/free+cocompletion.
Revision 76. Aug. 2024.

[49] nLab authors. monoidal category. https://ncatlab.org/nlab/show/monoidal+category.
Revision 169. Aug. 2024.

[50] nLab authors. star-algebra. https://ncatlab.org/nlab/show/star-algebra. Revision 24.
Aug. 2024.

[51] nLab authors. Yoneda lemma. https://ncatlab.org/nlab/show/Yoneda+lemma. Revision 83.
Aug. 2024.

[52] Michele Pagani, Peter Selinger, and Benot Valiron. “Applying quantitative semantics to
higher-order quantum computing”. In: CoRR abs/1311.2290 (2013). arXiv: 1311.2290. url:
http://arxiv.org/abs/1311.2290.

[53] Jennifer Paykin, Robert Rand, and Steve Zdancewic. “QWIRE: a core language for quantum
circuits”. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. POPL ’17. Paris, France: Association for Computing Machinery, 2017, pp. 846–858.
isbn: 9781450346603. doi: 10.1145/3009837.3009894. url:
https://doi.org/10.1145/3009837.3009894.

[54] Paolo Perrone. Starting Category Theory. WORLD SCIENTIFIC, 2024. doi: 10.1142/13670.
eprint: https://www.worldscientific.com/doi/pdf/10.1142/13670. url:
https://www.worldscientific.com/doi/abs/10.1142/13670.

[55] Gordon Plotkin and John Power. “Computational Effects and Operations: An Overview”. In:
Electron. Notes Theor. Comput. Sci. 73 (Oct. 2004), pp. 149–163. issn: 1571-0661. doi:
10.1016/j.entcs.2004.08.008. url: https://doi.org/10.1016/j.entcs.2004.08.008.

[56] Gordon Plotkin and John Power. “Notions of Computation Determine Monads”. In: Foundations
of Software Science and Computation Structures. Ed. by Mogens Nielsen and Uffe Engberg.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 342–356. isbn: 978-3-540-45931-6.

[57] Gordon Plotkin and John Power. “Tensors of Comodels and Models for Operational Semantics”.
In: Electronic Notes in Theoretical Computer Science 218 (2008). Proceedings of the 24th
Conference on the Mathematical Foundations of Programming Semantics (MFPS XXIV),
pp. 295–311. issn: 1571-0661. doi: https://doi.org/10.1016/j.entcs.2008.10.018. url:
https://www.sciencedirect.com/science/article/pii/S157106610800412X.

[58] John Power. “Premonoidal categories as categories with algebraic structure”. In: Theoretical
Computer Science 278.1 (2002). Mathematical Foundations of Programming Semantics 1996,
pp. 303–321. issn: 0304-3975. doi: https://doi.org/10.1016/S0304-3975(00)00340-6. url:
https://www.sciencedirect.com/science/article/pii/S0304397500003406.

[59] JOHN POWER and EDMUND ROBINSON. “Premonoidal categories and notions of
computation”. In: Mathematical Structures in Computer Science 7.5 (1997), pp. 453–468. doi:
10.1017/S0960129597002375.

[60] Matija Pretnar. “An Introduction to Algebraic Effects and Handlers. Invited tutorial paper”. In:
Electronic Notes in Theoretical Computer Science 319 (2015). The 31st Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXXI)., pp. 19–35. issn:
1571-0661. doi: https://doi.org/10.1016/j.entcs.2015.12.003. url:
https://www.sciencedirect.com/science/article/pii/S1571066115000705.

[61] E. Riehl. Category theory in context. Aurora: Dover modern math originals. Dover Publications,
2017. isbn: 978-0-486-82080-4.

[62] Hisham Sati and Urs Schreiber. The Quantum Monadology. 2023. arXiv: 2310.15735
[quant-ph]. url: https://arxiv.org/abs/2310.15735.

[63] PETER SELINGER. “Towards a quantum programming language”. In: Mathematical Structures
in Computer Science 14.4 (2004), pp. 527–586. doi: 10.1017/S0960129504004256.

https://ncatlab.org/nlab/show/Eckmann-Hilton+argument
https://ncatlab.org/nlab/revision/Eckmann-Hilton+argument/37
https://ncatlab.org/nlab/show/free+cocompletion
https://ncatlab.org/nlab/revision/free+cocompletion/76
https://ncatlab.org/nlab/show/monoidal+category
https://ncatlab.org/nlab/revision/monoidal+category/169
https://ncatlab.org/nlab/show/star-algebra
https://ncatlab.org/nlab/revision/star-algebra/24
https://ncatlab.org/nlab/show/Yoneda+lemma
https://ncatlab.org/nlab/revision/Yoneda+lemma/83
https://arxiv.org/abs/1311.2290
http://arxiv.org/abs/1311.2290
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1142/13670
https://www.worldscientific.com/doi/pdf/10.1142/13670
https://www.worldscientific.com/doi/abs/10.1142/13670
https://doi.org/10.1016/j.entcs.2004.08.008
https://doi.org/10.1016/j.entcs.2004.08.008
https://doi.org/https://doi.org/10.1016/j.entcs.2008.10.018
https://www.sciencedirect.com/science/article/pii/S157106610800412X
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00340-6
https://www.sciencedirect.com/science/article/pii/S0304397500003406
https://doi.org/10.1017/S0960129597002375
https://doi.org/https://doi.org/10.1016/j.entcs.2015.12.003
https://www.sciencedirect.com/science/article/pii/S1571066115000705
https://arxiv.org/abs/2310.15735
https://arxiv.org/abs/2310.15735
https://arxiv.org/abs/2310.15735
https://doi.org/10.1017/S0960129504004256

References 125

[64] Peter Selinger. “Dagger Compact Closed Categories and Completely Positive Maps: (Extended
Abstract)”. In: Electronic Notes in Theoretical Computer Science 170 (2007). Proceedings of the
3rd International Workshop on Quantum Programming Languages (QPL 2005), pp. 139–163.
issn: 1571-0661. doi: https://doi.org/10.1016/j.entcs.2006.12.018. url:
https://www.sciencedirect.com/science/article/pii/S1571066107000606.

[65] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer”. In: SIAM Journal on Computing 26.5 (Oct. 1997), pp. 1484–1509.
issn: 1095-7111. doi: 10.1137/s0097539795293172. url:
http://dx.doi.org/10.1137/S0097539795293172.

[66] Ian Stark. “Free-Algebra Models for the π-Calculus”. In: Foundations of Software Science and
Computation Structures: Proceedings of FOSSACS 2005. Lecture Notes in Computer Science
3441. Springer-Verlag, 2005, pp. 155–169. url:
http://www.inf.ed.ac.uk/~stark/freamp.html.

[67] Sam Staton. “Algebraic Effects, Linearity, and Quantum Programming Languages”. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’15. Mumbai, India: Association for Computing Machinery,
2015, pp. 395–406. isbn: 9781450333009. doi: 10.1145/2676726.2676999. url:
https://doi.org/10.1145/2676726.2676999.

[68] Sam Staton. “Freyd categories are Enriched Lawvere Theories”. In: Electronic Notes in
Theoretical Computer Science 303 (2014). Proceedings of the Workshop on Algebra, Coalgebra
and Topology (WACT 2013), pp. 197–206. issn: 1571-0661. doi:
https://doi.org/10.1016/j.entcs.2014.02.010. url:
https://www.sciencedirect.com/science/article/pii/S157106611400036X.

[69] Sam Staton. “Instances of Computational Effects: An Algebraic Perspective”. In: 2013 28th
Annual ACM/IEEE Symposium on Logic in Computer Science. 2013, pp. 519–519. doi:
10.1109/LICS.2013.58.

[70] Masamichi Takesaki. Theory of Operator Algebras I. 1st ed. Springer Science and Business
Media, Dec. 2012. isbn: 9781461261889.

[71] Philip Wadler. “The essence of functional programming”. In: Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’92.
Albuquerque, New Mexico, USA: Association for Computing Machinery, 1992, pp. 1–14. isbn:
0897914538. doi: 10.1145/143165.143169. url: https://doi.org/10.1145/143165.143169.

[72] Mark M. Wilde. Quantum Information Theory. 2nd ed. Cambridge University Press, 2017.
[73] Mingsheng Ying et al. An Algebra of Quantum Processes. 2010. arXiv: 0707.0330 [quant-ph].

url: https://arxiv.org/abs/0707.0330.
[74] Dongsheng Zhao and Taihe Fan. “Dcpo-completion of posets”. In: Theoretical Computer Science

411.22 (2010), pp. 2167–2173. issn: 0304-3975. doi:
https://doi.org/10.1016/j.tcs.2010.02.020. url:
https://www.sciencedirect.com/science/article/pii/S0304397510001155.

https://doi.org/https://doi.org/10.1016/j.entcs.2006.12.018
https://www.sciencedirect.com/science/article/pii/S1571066107000606
https://doi.org/10.1137/s0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://www.inf.ed.ac.uk/~stark/freamp.html
https://doi.org/10.1145/2676726.2676999
https://doi.org/10.1145/2676726.2676999
https://doi.org/https://doi.org/10.1016/j.entcs.2014.02.010
https://www.sciencedirect.com/science/article/pii/S157106611400036X
https://doi.org/10.1109/LICS.2013.58
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/143165.143169
https://arxiv.org/abs/0707.0330
https://arxiv.org/abs/0707.0330
https://doi.org/https://doi.org/10.1016/j.tcs.2010.02.020
https://www.sciencedirect.com/science/article/pii/S0304397510001155

	List of Figures
	List of Tables
	Introduction
	Contributions
	Related Work
	Outline

	Background
	Basic Category Theory
	Categories
	Monoidal categories
	Premonoidal categories

	Universal Algebra and the algebraic theory of effects
	Syntactic notion of algebraic theories
	Semantic notions of algebraic theories
	Algebraic Effects

	Quantum Computing and String Diagrams
	Quantum Computing
	Compact closed categories and String Diagrams: a CQM primer
	The category of finite dimensional C* algebras and CP maps

	Sums and Tensors of Parameterised Algebraic Theories
	Syntactic Framework for Single-Sorted Parameterised Algebraic Theories
	Syntactic framework
	Models

	From presentations to [Ctx0, Set]-Enriched Lawvere Theories
	Enriched Lawvere Theories: enrichment or actegory
	Explicit characterisation of the theory generated from a presentation

	Sums and Tensors of presented theories
	A premonoidal product from the action and explicit characterisation
	Translation of Sequencing and Premonoidality
	Sums
	Tensors

	An Algebraic Theory for Quantum Communication
	The Theory
	Starting point: algebraic theory for qubit quantum computing
	The theory to be studied: I/OQUANTUM

	An Operational Semantics for I/OQUANTUM
	Syntax and Type System
	Operational Semantics
	Properties

	Program Equivalence
	Notions of chained reduction
	A first notion of program equivalence
	A `quantum' equivalence
	Basic Properties
	Reduction Paths and Compatibility with Substitution
	Satisfying equations of I/OQUANTUM

	A Monadic Denotational Semantics
	Motivation
	Constructing the Quantum I/O Monad
	The Free I/O Monad and the Resumptions Monad
	Infinite Biproducts for CP
	Explicit Definition in CP and Properties
	Denotational Semantics

	Results with respect to the Operational Semantics
	Preliminaries
	Proof of Main Result
	Corollaries: Adequacy and Full Abstraction

	Results with respect to the PAT

	Conclusion
	Summary
	Future Work

	References

