
Pushing Contextual Modal Type Theory to its limits
TheoWang

Department of Computer Science, University of Oxford

Multi-Stage Programming (MSP)

Consider the following pow function:
1 let rec pow n x = if n = 0 then 1 else x * pow (n-1) x

Here, pow is an abstraction: it works for any n, but is ‘inefficient’ for any fixed n.

MSP goal: Recover the performance for fixed n via run-time code generation.

pow_staged n →∗ code (λx. (x ∗ ... ∗ x)) (n times)
This is by conceptually dividing the execution of pow into two stages: stage 0 (‘com-
pile time’) takes input n, and generates more efficient code to be executed at stage
1 (‘run time’), given x.

Mechanics of quasi-quoting

(In the style of Murase et al. 2023).

let x = code (e) in code (f (splice(x)))

Quoting (code generation)

Splicing (code composition)

Two appraoches to dealing with free variables: λ© vs CMTT

Two of the most prominent approaches to MSP are λ© (Davies 1996) and CMTT

(Nanevski et al. 2008). λ© binds its free variables statically at quoting-time with

an implicit context shared across the stage; CMTT maintains a list of free variables

(explicit context) and binds them dynamically at splicing-time via explicit substitution.

Property λ© (implicit context) CMTT (explicit context)

A code Type ©A [Ψ ` A]

A code Term Γ `n+1 e : A

Γ `n< e >: ©A

∆; Ψ ` e : A

∆; Γ ` box (Ψ ` e) : [Ψ ` A]

A code splicing
Γ `n e : ©A

Γ `n+1∼ e : A

∆; Γ ` e : [Ψ ` A] ∆, u :: A[Ψ]; Γ ` e′ : C

∆; Γ ` let box u = e in e′ : C

∆, u :: A[Ψ], ∆′; Γ ` σ : Ψ
∆, u :: A[Ψ], ∆′; Γ ` u with σ : A

Table 1. λ© vs CMTT: a comparison

(Implementations of pow omitted due to lack of space.)

The (closed?) expressivity gap

Compared to λ©, CMTT has been known to lack the expressivity to have multiple

pieces of code always share the same context. The type ©A → ©B really means

‘a function taking an A code and giving a B code implicitly under the same context,

for any such context’ – i.e. ∀Ψ.[Ψ ` A] → [Ψ ` B]. This sort of abstraction over

contexts is exactly Murase et al.’s extension to CMTT in λ∀[], who then proved the

following theorem:

Theorem (Murase et al. 2023): There exists a sounds embedding of λ© in λ∀[].

Problem statement & approach

Current state of the world:

Figure 1. Expressivity landscape of MSP languages

Are first-class contexts strictly necessary to get the expressivity of λ©? Are they still

necessary for embedding derived polymorphic languages like MetaOCaml?

Fair question: PL features interact in surprising ways (cf. Landin’s knot).

For fair comparison withMetaOCaml ≈ λ© ∪ OCaml, we:

1. Create a language Lys ≈ CMTT ∪ OCaml;

2. Include in Lys a restricted version of Jang et al. (2022)’s polymorphic code

type (Φ, Θ contain System-F type variables):
Φ ∩ Θ = ∅ Θ, Φ ` Ψ ctx Θ, Φ ` τ type Θ, Φ; ∆; Ψ ` e : τ

Θ; ∆; Γ ` box (Φ; Ψ ` e) : [Φ; Ψ ` τ ]
3. Attempt to translate complex MetaOCaml applications to Lys.

Translating symbolic evaluation

Stage-0 functionsmanipulating (potentially open) stage-1 code to form other pieces

of code are referred to as symbolic evaluation in the literature. E.g. ©A → ©B:

λ∀[] style translation: explicitly share the context. ∀Ψ.[Ψ ` A] → [Ψ ` B].
Our Insight: for any context Ψ we have [A ` B] → ([Ψ ` A] → [Ψ ` B]), i.e.
[A ` B] incorporates the information needed. So our solution: [A ` B].

Symbolic evaluation allows MetaOCaml to exploit statically known structures. Ex-

ample: representing a stage-0 f : (τ1 × τ2) code → B code.
1 let f_inefficient (x: ©(τ1 × τ2)) =
2 (* tuple deconstructed at stage 1*)
3 ... .<match .~x with (v1, v2) -> ... v1 ... v2 ...>.
4

5 let f_efficient (x: ©τ1 × ©τ2) =
6 (* tuple deconstructed at stage 0*)
7 match x with (c1, c2) -> ... .< ... .~c1 ... .~c2 ...>.

By using stage-0 data-structures of stage-1 values, we remove the overhead of

destructing that data-structure at runtime.

λ∀[] style: ∀Ψ.([Ψ ` τ1] × [Ψ ` τ2] → [Ψ ` B]).
Our soln 1: [τ1, τ2 ` B], but hard-coding structure of data in the context. Idea:
force any destructing of data-structures to have happened already.

Our soln 2: [τ1 × τ2 ` B]: but did not remove the overhead.

Case Study 1: Staged tagless final interpreters

Problem: embedding some object-language in MetaOCaml (Carette et al. 2007).

Concept: ‘CPS of universal algebra’ (from anonymous reviewer).

Choose a ‘representation’ type ('a,'h) repr as the ‘outcome’ of the
interpretation ('a is the type; 'h is the context)
Each node in the AST is represented as a function; and use De Bruijn indices

to retrieve elements from the context. E.g. Lam (x, e2) becomes
1 lam: ∀'a. ∀'b. ∀'h. ('b, ('a * 'h)) repr -> ('a -> 'b, 'h) repr

Take the repr to be 'h -> ©'a to get ‘compilation’.

Translation: (failed) Assume a fixed 'a.

Soln 1 [... flattened_h_1...,... flattened_h_2 ... |- 'a] does not
work: it forces us to include the structure of every possible 'h in our context,
which breaks our abstraction and is completely intractable.

Soln 2 ['h; 'h |- 'a] does work, but unwraps the context at runtime.
1 val: (((int -> int), unit) repr) = (box (h: unit|- (fun (x: int) -> (match (x,

h) with (a, h)-> a + match (x, h) with (a, h)-> a{0}))))

What we really need: type ('a, Ψ) repr.

Case Study 2: Staged stream fusion

Problem: deforestation of Java-like stream operations (Kiselyov et al. 2017).

Concept:

Use pull-streams
1 type ('a, 's) stream_shape = Nil | Cons of ('a * 's);;
2 type 'a stream =
3 St of (∃'s. ('s * ('s -> ('a, 's) stream_shape)));;

Gradually pull the destruction of data structures to ‘compile time’.

Translation: (failed) similarly to before, we get to a stage where we have some

type T = ∃'a. 'a -> ©C for some fixed type C. Thus solution 1 breaks the
abstraction; solution 2 is inefficient.

What we really need: ∃Ψ. [Ψ ` C].

Discussion & future work

Negative results =⇒ strong evidence thatMurase et al.’s extension is

necessary for MetaOCaml. TODO: prove it?

But problems mainly when we need the expressiveness of type-level abstraction

which translate naturally to abstracting over contexts. Hence unclear whether

still minimal for λ©. TODO: what is slightly less expressive than λ∀[]?

Interesting connection between polymorphic (Jang et al 2022) and

context-polymorphic CMTT (Murase et al 2023): using De Bruijn indices, we

conjecture being able to translate the latter to the former, with constant

overhead every piece of generated code. TODO: Prove it?

Criticism: instead of trying to reproduce MetaOCaml programs, perhaps try

writing native CMTT programs? TODO: try this out!

Advised by Jeremy Yallop and Alan Mycroft (University of Cambridge) POPL 2024 Student Research Competitition (Graduate) theo.wang@cs.ox.ac.uk

mailto:theo.wang@cs.ox.ac.uk

