

Multi-Stage Programming (MSP)

Consider the following **pow** function:

let rec pow n x = if n = 0 then 1 else x * pow (n-1) x

Here, **pow** is an *abstraction*: it works for any n, but is 'inefficient' for any fixed n.

MSP goal: Recover the performance for fixed n via run-time code generation.

pow_staged $n \rightarrow^* \underline{code} (\lambda x. (x * ... * x))$ (n times) This is by conceptually dividing the execution of **pow** into two stages: stage O ('compile time') takes input n, and generates more efficient code to be executed at stage 1 ('run time'), given x.

Mechanics of quasi-quoting

(In the style of Murase et al. 2023).

Quoting (code generation)

let x = code (e) in code (f (splice(x)))

Two appraoches to dealing with free variables: λ^{\bigcirc} vs CMTT

Two of the most prominent approaches to MSP are λ^{\bigcirc} (Davies 1996) and CMTT (Nanevski et al. 2008). λ^{\bigcirc} binds its free variables statically at quoting-time with an *implicit* context shared across the stage; CMTT maintains a list of free variables (*explicit* context) and binds them dynamically at *splicing-time* via explicit substitution.

Property	λ^{\bigcirc} (implicit context)	CMTT (explicit context)
A code Type	$\bigcirc A$	$[\Psi \vdash A]$
A code Term	$\frac{\Gamma \vdash^{n+1} e : A}{\Gamma \vdash^n < e >: \bigcirc A}$	$\frac{\Delta; \Psi \vdash e : A}{\Delta; \Gamma \vdash box \ (\Psi \vdash e) : [\Psi \vdash A]}$
A code splicing	$\frac{\Gamma \vdash^{n} e : \bigcirc A}{\Gamma \vdash^{n+1} \sim e : A}$	$\Delta; \Gamma \vdash e : [\Psi \vdash A] \qquad \Delta, u :: A[\Psi]; \Gamma \vdash e$ $\Delta; \Gamma \vdash let box \ u = e \text{ in } e' : C$ $\Delta \ u :: A[\Psi] \ \Delta': \Gamma \vdash \sigma : \Psi$
		$\overline{\Delta, u :: A[\Psi], \Delta'; \Gamma \vdash u \text{ with } \sigma : A}$

Table 1. λ^{\bigcirc} vs CMTT: a comparison

(Implementations of **pow** omitted due to lack of space.)

The (closed?) expressivity gap

Compared to λ^{\bigcirc} , CMTT has been known to lack the expressivity to have multiple pieces of code always share the same context. The type $\bigcirc A \rightarrow \bigcirc B$ really means 'a function taking an A code and giving a B code implicitly under the same context, for any such context' – i.e. $\forall \Psi [\Psi \vdash A] \rightarrow [\Psi \vdash B]$. This sort of abstraction over **contexts** is exactly Murase et al.'s extension to CMTT in $\lambda^{\forall \parallel}$, who then proved the following theorem:

Theorem (Murase et al. 2023): There exists a sounds embedding of λ^{\bigcirc} in $\lambda^{\forall \parallel}$.

Advised by Jeremy Yallop and Alan Mycroft (University of Cambridge)

Pushing Contextual Modal Type Theory to its limits

Theo Wang

Department of Computer Science, University of Oxford

Problem statement & approach

Splicing (code composition)

 $(e): [\Psi \vdash A]$ $\varphi :: A[\Psi]; \Gamma \vdash e' : C$ e in e' : C $\Gamma \vdash \sigma : \Psi$

Figure 1. Expressivity landscape of MSP languages

Are first-class contexts strictly necessary to get the expressivity of λ^{\bigcirc} ? Are they still necessary for embedding derived **polymorphic** languages like MetaOCaml?

Fair question: **PL features interact in surprising ways** (cf. Landin's knot).

For fair comparison with **MetaOCaml** $\approx \lambda^{\bigcirc} \cup$ **OCaml**, we:

- 1. Create a language Lys \approx CMTT \cup OCaml;
- 2. Include in Lys a restricted version of Jang et al. (2022)'s polymorphic code type (Φ , Θ contain System-F type variables):

 $\Phi \cap \Theta = \emptyset \qquad \Theta, \Phi \vdash \Psi \text{ ctx} \qquad \Theta, \Phi \vdash \tau \text{ type} \qquad \Theta, \Phi; \Delta; \Psi \vdash e : \tau$

 $\Theta; \Delta; \Gamma \vdash \mathsf{box} \ (\Phi; \Psi \vdash e) : [\Phi; \Psi \vdash \tau]$

3. Attempt to translate complex MetaOCaml applications to Lys.

Translating symbolic evaluation

Stage-O functions manipulating (potentially open) stage-1 code to form other pieces of code are referred to as symbolic evaluation in the literature. E.g. $\bigcirc A \rightarrow \bigcirc B$:

- $\lambda^{\forall []}$ style translation: explicitly share the context. $\forall \Psi . [\Psi \vdash A] \rightarrow [\Psi \vdash B]$.
- Our Insight: for any context Ψ we have $[A \vdash B] \rightarrow ([\Psi \vdash A] \rightarrow [\Psi \vdash B])$, i.e. $[A \vdash B]$ incorporates the information needed. So our solution: $[A \vdash B]$.

Symbolic evaluation allows MetaOCaml to **exploit statically known structures**. Example: representing a stage-0 $f:(\tau_1 \times \tau_2)$ code $\rightarrow B$ code.

- 1 let f_inefficient (x: $\bigcirc(au_1 imes au_2)$) = (* tuple deconstructed at stage 1*)<match .~x with $(v1, v2) \rightarrow ... v1 \dots v2 \dots >.$ 5 let f_efficient (x: $\bigcirc \tau_1 \times \bigcirc \tau_2$) = (* tuple deconstructed at stage 0*)
- match x with (c1, c2) \rightarrow <~c1~c2 ...>.

By using stage-0 data-structures of stage-1 values, we remove the overhead of destructing that data-structure at runtime.

- $\lambda^{\forall \parallel}$ style: $\forall \Psi . ([\Psi \vdash \tau_1] \times [\Psi \vdash \tau_2] \rightarrow [\Psi \vdash B]).$
- Our soln 1: $[\tau_1, \tau_2 \vdash B]$, but hard-coding structure of data in the context. Idea: force any destructing of data-structures to have happened already.
- Our soln 2: $[\tau_1 \times \tau_2 \vdash B]$: but did not remove the overhead.

Case Study 1: Staged tagless final interpreters

Problem: embedding some object-language in MetaOCaml (Carette et al. 2007). **Concept**: 'CPS of universal algebra' (from anonymous reviewer).

- interpretation ('a is the type; 'h is the context)

Take the repr to be $h \rightarrow \bigcirc a$ to get 'compilation'.

Translation: (*failed*) Assume a fixed 'a.

- which breaks our abstraction and is completely intractable.

What we really need: type ('a, Ψ) repr.

Case Study 2: Staged stream fusion

Problem: deforestation of Java-like stream operations (Kiselyov et al. 2017). Concept:

- Use pull-streams
- 1 type ('a, 's) stream_shape = Nil | Cons of ('a * 's);;
- 2 type 'a stream =
- Gradually pull the destruction of data structures to 'compile time'.

Translation: (*failed*) similarly to before, we get to a stage where we have some type $T = \exists a. a \rightarrow C$ for some fixed type C. Thus solution 1 breaks the abstraction; solution 2 is inefficient.

What we really need: $\exists \Psi$. $[\Psi \vdash C]$.

Discussion & future work

- **necessary for MetaOCaml**. TODO: prove it?
- overhead every piece of generated code. TODO: Prove it?
- writing **native CMTT programs**? TODO: try this out!

• Choose a 'representation' type ('a, 'h) repr as the 'outcome' of the • Each node in the AST is represented as a function; and use De Bruijn indices to retrieve elements from the context. E.g. Lam (x, e2) becomes

1 lam: ∀'a. ∀'b. ∀'h. ('b, ('a * 'h)) repr -> ('a -> 'b, 'h) repr

Soln 1 [... flattened_h_1..., flattened_h_2 ... |- 'a] does not work: it forces us to include the structure of every possible 'h in our context, • Soln 2 ['h; 'h |- 'a] does work, but unwraps the context at runtime. 1 val: (((int -> int), unit) repr) = (box (h: unit|- (fun (x: int) -> (match (x, h) with $(a, h) \rightarrow a + match (x, h) with (a, h) \rightarrow a\{0\})))$

St of (∃'s. ('s * ('s -> ('a, 's) stream_shape)));;

• Negative results \implies strong evidence that **Murase et al.'s extension is**

But problems mainly when we need the expressiveness of type-level abstraction which translate naturally to abstracting over contexts. Hence **unclear whether still minimal for** λ^{\bigcirc} . TODO: what is slightly less expressive than $\lambda^{\forall \parallel}$?

 Interesting connection between polymorphic (Jang et al 2022) and context-polymorphic CMTT (Murase et al 2023): using De Bruijn indices, we conjecture being able to translate the latter to the former, with constant

Criticism: instead of trying to reproduce MetaOCaml programs, perhaps try