1

Pushing Contextual Modal Type Theory to its limits

Multi-Stage Programming (MSP)

Consider the following pow function:

let rec pow n x = if n = 0 then 1 else x * pow (n-1) x

Here, pow is an abstraction: it works for any n, but is ‘inefficient’ for any fixed n.

MSP goal: Recover the performance for fixed n via run-time code generation.
xx)) (N times)

pow_staged n —" code (Ax. (x * ...

This is by conceptually dividing the execution of pow into two stages: stage O (‘com-
pile time’) takes input n, and generates more efficient code to be executed at stage
1 ('run time’), given z.

Mechanics of quasi-quoting

(In the style of Murase et al. 2023).

Quoting (code generation)

| |

let x = code (e) in code (f (splice (x)))

Splicing (code composition)

Two appraoches to dealing with free variables: \© vs CMTT

Two of the most prominent approaches to MSP are \O (Davies 1996) and CMTT
(Nanevski et al. 2008). O binds its free variables statically at quoting-time with
an implicit context shared across the stage; CMTT maintains a list of free variables
(explicit context) and binds them dynamically at splicing-time via explicit substitution.

Property MO (implicit context) CMTT (explicit context)
A code Type OA U A
[Frtle: A AU Ee: A
A code Term
F'<e>:OA A; T box (Ue): |[UE A
'Fre:(OA ATkFe: WHEA Aus AV T'Fe:C
A code splicing e e A A:T'Fletboxu=cecine : C

Aus AVLA T o U
Aus AV A T Fuwitho @ A

Table 1. AO vs CMTT: a comparison

(Implementations of pow omitted due to lack of space.)

The (closed?) expressivity gap

Compared to AO, CMTT has been known to lack the expressivity to have multiple
pieces of code always share the same context. The type (OA — (OB really means
‘a function taking an A code and giving a B code implicitly under the same context,
for any such context’ - i.e. VU.|V - A] — | F B|. This sort of abstraction over
contexts is exactly Murase et al's extension to CMTT in A", who then proved the
following theorem:

Theorem (Murase et al. 2023): There exists a sounds embedding of A© in \"U.

Advised by Jeremy Yallop and Alan Mycroft (University of Cambridge)

Theo Wang

Department of Computer Science, University of Oxford

Problem statement & approach

Current state of the world:

Murase et al

Lambda
CMTT :

/’MetaOCamI
Lys @€amiy

Figure 1. Expressivity landscape of MSP languages

Are first-class contexts strictly necessary to get the expressivity of AO? Are they still
necessary for embedding derived polymorphic languages like MetaOCaml?

Fair question: PL features interact in surprising ways (cf. Landin’s knot).

For fair comparison with MetaOCaml ~ \© U OCaml, we:

1. Create a language Lys ~ CMTT U OCaml;
2. Include in Lys a restricted version of Jang et al. (2022)’s polymorphic code
type (@, © contain System-F type variables):

dPNO=0 O6,>IFVctx O, dIFrtype O DI:A;Vke:T
O; ;' box (®; U Fe): |D; U F 7]
3. Attempt to translate complex MetaOCaml applications to Lys.

Translating symbolic evaluation

Stage-0 functions manipulating (potentially open) stage-1 code to form other pieces
of code are referred to as symbolic evaluation in the literature. E.g. OA — OB:

= \"U style translation: explicitly share the context. VU.[U - A] — [¥ - B].

= QOur Insight: for any context ¥ we have [A+ B| — ((VF Al — [V - BJ), i.e.
‘A F B] incorporates the information needed. So our solution: A F B].

Symbolic evaluation allows MetaOCaml to exploit statically known structures. Ex-
ample: representing a stage-O f : (1 X 7») code — B code.

1let f_inefficient (x: O(n Xm)) =

2 (¥ tuple deconstructed at stage 1%*)

3<match .~x with (v1, v2) -> ... vl ... v2 ...>.

4

slet f efficient (x: O X Omn) =

6 (¥ tuple deconstructed at stage 0%)

7 match x with (cl, c2) -><~cl~c2 ...>.

By using stage-0 data-structures of stage-1 values, we remove the overhead of
destructing that data-structure at runtime.

= \style: VU.([U F 7] x [U 1] — [F B)).

= Qur soln 1: |y, » F B, but hard-coding structure of data in the context. Idea:
force any destructing of data-structures to have happened already.

= Qur soln 2: |y x » F BJ: but did not remove the overhead.

POPL 2024 Student Research Competitition (Graduate)

UNIVERSITY OF

OXFORD

Case Study 1: Staged tagless final interpreters

Problem: embedding some object-language in MetaOCaml (Carette et al. 2007).
Concept: ‘CPS of universal algebra’ (from anonymous reviewer).

= Choose a representation’ type ('a, 'h) repr as the ‘outcome’ of the
interpretation ('a is the type; 'h is the context)

= Fach node in the AST is represented as a function; and use De Bruijn indices
to retrieve elements from the context. E.g. Lam (x, e2) becomes

tlam: V'a. V'b. V'h. ('b, 'h)) repr -> ('a -> 'b,

('a * 'h) repr

Take the reprto be 'h -> () 'a to get ‘compilation’.

Translation: (failed) Assume a fixed 'a.

= Solnl1[... flattened h 1...,... flattened h 2 ... |- 'a] does not
work: It forces us to include the structure of every possible 'h in our context,
which breaks our abstraction and is completely intractable.

= Soln2 ['h; 'h |- 'a] does work, but unwraps the context at runtime.
tval: (((int -> int), unit) repr) = (box (h: unitl|- (fun (x: int) -> (match (x,
h) with (a, h)-> a + match (x, h) with (a, h)-> a{0}))))

What we really need: type ('a, V¥) repr.

Case Study 2: Staged stream fusion

Problem: deforestation of Java-like stream operations (Kiselyov et al. 2017).
Concept:

= Use pull-streams

1type ('a, 's) stream shape = Nil | Cons of ('a * 's);;
2type 'a stream =

3 St of (d's.
= Gradually pull the destruction of data structures to ‘compile time..

('s * ('s -> ('a, 's) stream_shape)));;

Translation: (failed) similarly to before, we get to a stage where we have some
type T = d'a. 'a —-> ()C for some fixed type C. Thus solution 1 breaks the
abstraction; solution 2 is inefficient.

What we really need: 30. |V - (.

Discussion & future work

= Negative results = strong evidence that Murase et al's extension is
necessary for MetaOCaml. TODO: prove it?

= But problems mainly when we need the expressiveness of type-level abstraction
which translate naturally to abstracting over contexts. Hence unclear whether
still minimal for A©. TODO: what is slightly less expressive than \7?

" |nteresting connection between polymorphic (Jang et al 2022) and
context-polymorphic CMTT (Murase et al 2023): using De Bruijn indices, we
conjecture being able to translate the latter to the former, with constant
overhead every piece of generated code. TODO: Prove it?

= Criticism: instead of trying to reproduce MetaOCaml programs, perhaps try
writing native CMTT programs? TODO: try this out!

theo.wang@cs.ox.ac.uk

mailto:theo.wang@cs.ox.ac.uk

