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1 INTRODUCTION
Multi-stage programming (MSP) is a well-known metaprogramming technique using runtime code
generation to reduce the overhead of pristine abstractions.

There are mainly two approaches to MSP. On the one hand, languages based on linear temporal
logic like 𝜆⃝ [3] and MetaOCaml [11] give an elegantly compositional calculus of open code, but fail
to allow safe code execution [8, 12] and safe interactions with imperative effects (cf. scope extrusion,
[1]). On the other hand, the second approach based on contextual modal (S4) types (CMTT, [4, 10])
gives a calculus of open code with explicit context. It does not present MetaOCaml’s problems, but
is known to be less expressive. Ample theoretical works have proposed extensions such as System
F polymorphism (Moebius, [5]) and context polymorphism (𝜆∀[ ] , [9]), which significantly reduced
the gap. The latter even demonstrates an embedding of 𝜆⃝ into their modal types.

However, these works leave a number of questions open. The relationship between Moebius and
𝜆∀[ ] is unclear, and it remains a question whether the context polymorphic extension is necessary
to match the expressiveness of 𝜆⃝ , and whether it is still sufficient to express the more elaborate,
practical applications in MetaOCaml. In this work, we explore these questions under the lenses
of a practical metaprogrammer. We implement Lys, a practical CMTT-based MSP language with
a restricted form Moebius-like polymorphism, and study its expressiveness with novel (attempts
of) reimplementations of MetaOCaml programs. With this, we provide empirical evidence of the
limitations of System F polymorphism, and argue for the practical necessity of first class contexts.

2 BACKGROUND AND APPROACH
2.1 CMTT and System F polymorphism [5]
CMTT [10] is characterised by a code generation construct of the form box(Ψ ⊢ e): [Ψ ⊢ A], best
interpreted as an expression 𝑒 with holes specified by the context Ψ. Unboxing (let box u = box
(Ψ ⊢ e) in e’) takes the expression out of the box binds it to metavariable u, and syntactically
splices it into e’ at u’s occurrences. We require that each such occurrence closes the holes with an
explicit substitution.

Conceptually, we can think of the boxed type [Ψ ⊢ A] like a reified typing derivation. Allowing
more types of holes then amounts to including the corresponding context in the box type. In
this spirit, Jang et al. [5] extend CMTT with multi-level System F style polymorphism, which
corresponds to extending the box context to bind type variables and meta (or higher) level variables
as well. For the purpose of this work, we only consider the 2-level restriction, i.e. types of the form
[Φ; Ψ ⊢ A] where Φ is the type variable context and Ψ the intuitionistic context, for we believe
the multi-level extension is orthogonal to our exploration. We leave this question to future work.
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2.2 MetaOCaml and context polymorphic CMTT [9]
On the other hand, MetaOCaml [6, 11] achieves staging by dividing the program into different
stages, indicated using quotes .<e>. and splices .∼(e). Quoting code delays its execution to the
next stage; splicing advances it to the previous stage. Importantly, each stage has its shared implicit
context, and each stage-𝑛 variable can only be bound to a stage-𝑛 binder1. With the implicit stage-
specific context, MetaOCaml binds its free variables directly when the next-stage code is created.
This is in contrast to CMTT boxes, where free variables are explicitly carried in their types and are
only instantiated when used.
This difference makes symbolic evaluation, a key feature in MetaOCaml, hard in CMTT. In

MetaOCaml, symbolic evaluation is enabled by functions of type A code -> B code. Because
the input has all its free variables statically bound when it was constructed, all free variables the
output B code inherits from the A codewill also be bound in that same context. In other words, the
output implicitly depends on the context of the input. CMTT, on the other hand, cannot express this
dependence in general. Intuitively, the MetaOCaml A code -> B code would have corresponded
to ∀Ψ.[Ψ ⊢ A] -> [Ψ ⊢ B] in CMTT, which is not expressible in CMTT, thus motivating Murase
et al.’s [9] context polymorphic extension.

2.3 Our approach
In contrast to Murase et al., we choose to study CMTT’s difficulties with MetaOCaml style symbolic
evaluation with a slight detour.

MetaOCaml inherits from LTL the isomorphism (A -> B) code � A code -> B code2, where
code corresponds to the ⃝ modality, meaning ‘true at the next stage’. In contrast, Lys can only
express the left-to-right implication: [x: A ⊢ B] -> ([Ψ ⊢ A] -> [Ψ ⊢ B]). Conveniently,
this implication holds for any Ψ on the right-hand side. This means that [x: A ⊢ B] becomes an
adequate translation for A code -> B code. Intuitively, regardless of what context the A code
and B code both depend on, all we need is a context-agnostic template guiding where we should
splice the A value in the resulting B code.

This insight enables us to start from Lys and attempt to reproduce practical MetaOCaml programs.
We shall see that the roadblocks we encounter provide valuable insight on the expressiveness gaps
between polymorphic CMTT, MetaOCaml, and – unsurprisingly – context polymorphic CMTT.

3 CASE STUDIES AND FINDINGS
We present two case studies in [unsuccessful] reproductions of MetaOCaml programs with Lys.

3.1 Reproducing a Stream Fusion Library
We first study the Strymonas [7] stream fusion library in MetaOCaml. The goal of such a library is
to expose a functional stream processing API, while using staging to perform deforestation and
compile it to efficient imperative code. For example, squaring all elements of an array and summing
it is expressed as as of_arr .<arr>. |> map (fun x -> .<∼x * ∼x>.) |> sum, which then
compiles to an imperative for loop without any abstraction overhead.
To achieve this, Kiselyov et al. first chose to use pull streams (𝛼 stream = ∃𝛼. 𝜎 * (𝜎 ->

(1+𝛼*𝜎))), then crucially used continuation passing style (CPS) to pull the process of unwrapping
known data structures to an earlier stage. This is a key technique in MetaOCaml, and as we shall see,
this is also where Lys encounters difficulties.

1Or a stage-𝑚 binder with𝑚 ≤ 𝑛 thanks cross-stage persistence [12], which we do not yet discuss to avoid confusion.
2In modal logic, the left-to-right implication is the 𝐾 axiom, and the converse the 𝐾−1 axiom, proper to the linear time
assumption.
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In MetaOCaml, the power of symbolic evaluation comes when a composite type A contains
statically known structures. This is because MetaOCaml allows us to pull all of the known structures
to an earlier stage. Consider a MetaOCaml value v: A code. Since can only access a value if we
are at the same stage as that value, we have to unwrap v it at the exact stage where it lies (stage 1),
no matter what we prior knowledge we possess. Now suppose that we know that v is always a
tuple, i.e. A=𝜏1 × 𝜏2, but do not know the value of its components. Naively transforming A code
to A’ = 𝜏1 code × 𝜏2 code is not helpful, as such a value lives at an earlier stage (stage 0) and so
is not interchangeable with A code. So how can we exploit this knowledge? The crucial insight
is that in MetaOCaml, while A code and A’ are not interchangeable, A code -> B code and A’
-> B code are, because they are both stage 0 values, and because every component of the input
unknown at stage 0 lives at stage 1. Importantly, in the latter case, symbolic evaluation allows us to
unwrap the input tuple at stage 0! Thus, we can naturally pull the deconstruction of v to stage 0
via CPS, by representing v instead as a function of type ∀𝜔.(𝜏1 code × 𝜏2 code → 𝜔) → 𝜔 .

Unfortunately, expressing this in Lys is rather awkward. Naively translating a value of type A’
-> B code using the previous insight gives the type [𝑥 : A ⊢ B], which is clearly inefficient because
we have to unwrap the data structure at stage 1. Alternatively, we can flatten the A’ data structure,
extract all the dynamic components, and explicitly specify the corresponding types in the result’s
context: [𝑥1 : 𝜏1, 𝑥2 : 𝜏2 ⊢ B]. The problem with this second approach, is that we are committing to
one particular structure of A. But suppose we wanted to quantify over A’s; what will happen?

In Strymonas, one of the most important savings (in [7] §5.2) was achieved through exploiting a
known structure hidden under the existential quantification, where we transform our existential
type from ∃𝜎. 𝜎 code * ... to ∃𝜎 ′ . ∀𝜔. 𝜎 ′ -> 𝜔 code -> 𝜔 code * .... The hidden state 𝜎 ′

now has its stage-0 structure pulled out, like A’ in our previous example. It is possible to translate
this using the second formulation, but this breaks the data abstraction and exposes the internals of
a particular implementation of ’a, which is not acceptable. Clearly, to circumvent this, we would
need first class contexts, and more specifically, existential quantification over contexts.

3.2 Reproducing Tagless-Final Encodings in CMTT
Another elegant application of MetaOCaml-like MSP languages is the staging of tagless-final
interpreters [2]. We discover that embedding the simply typed lambda calculus (STLC) using De
Bruijn indices can be very elegantly done with the representation type (’a, ’h) repr = [h: ’h
⊢ ’a], where ’h is the polymorphic context type (corresponding to an STLC typing context) and
h its instantiation. A De Bruijn index representing a binder is then encoded by the procedure of
unwrapping the context and finding its corresponding value.
However, this procedure cannot be done at stage 0, for an exactly analogous reason as in

section 3.1: the context being polymorphic, we cannot commit to one shape of the context. For
example, the function which doubles its integer input, lam (add (z) (z)) reduces to the following:

1 val: ((( int -> int), unit) repr) = (box (h: unit|- (fun (x: int) -> (match (x, h)

with (a, h)-> a + match (x, h) with (a, h)-> a{0}))))

This once again evidences that the System F extension alone seems to fail to match the expres-
siveness of MetaOCaml. Naturally, we would require first class contexts, and more specifically, type
families indexed by context types, to elegantly express this tagless final embedding of STLC.
Additionally, we see a generic way of potentially encoding a polymporphic context with a

polymorphic variable h in the context, and unwrapping the context with De Bruijn indices. We
hypothesise that this generalisation does hold and that System F polymorphic CMTT can express
any term in context polymorphic CMTT with only an overhead of unwrapping the context. We
leave its verification to future work.
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A A LITTLE BIT MORE CONTEXT
A.1 Staging the power function in CMTT – a first taste of MSP
Consider the function pow computing the 𝑛th power of 𝑥 .

1 let rec pow n x = if n = 0 then 1 else x * pow (n-1) x

In a way, pow provides an abstraction. For any 𝑛, it gives a function int -> int which can
compute the 𝑛th power of its input. However, if we knew 𝑛 in advance, this abstraction would be
cumbersome: at each step, instead of just multiplying, we unroll the fixpoint, check if 𝑛 = 0, and do
a recursive call.
MSP eliminates exactly this overhead. The concept is simple: we divide this program into two

stages and use type-theoretical constructs to force the program to be reduced exactly in that order.
Stage 0 produces a piece of compiled code with respect to the first input 𝑛: box (x:int |- x *

x * ... x * 1) (𝑛 times), of type [x:int ⊢ int] (meaning piece of code of type int depending
on a free variable 𝑥 of type int). Stage 1 can then efficiently compute 𝑥𝑛 without any abstraction
overhead.

How CMTT achieves this is shown in fig. 1, as presented by [10]. As we can see, the computation
that can be performed given static input 𝑛 are pulled outside boxes, and those which can’t are
pushed inside. Compositionality of the code boxes is enabled by the ability of unboxing a piece
of code and splicing it in another box (let box u = ... in ...). When doing so, all the free
variables have to be closed (u with (𝜎)), which happens by simultaneous substitution.
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1 let rec pow: int -> [x:int |- int] = fun (n: int) ->

2 if n = 0 then box (x: int |- 1)

3 else

4 let box pow_n_min_1 = pow (n-1) in

5 box (x: int |- x * pow_n_min_1 with (x))

Fig. 1. Staged power function in CMTT

1 (*pow: int -> (int -> int) code*)

2 let pow n =

3 (*aux: int -> int code -> int code*)

4 let rec aux n x =

5 if n = 0 then .< 1 >.

6 else .<.~( x ) * .~( aux ( n-1 ) x ) >.;;

7 in

8 .< fun x ->

9 .~( aux n .< x >.) >.;;

10

Fig. 2. Staged power function in MetaOCaml

Yellow = stage 0; Green = stage 1; variables and corresponding bindings in the same colour

A.2 Staging the power function in MetaOCaml – intuition on ‘symbolic evaluation’
MetaOCaml, based on 𝜆⃝ , hence linear temporal logic (LTL), achieves type-safe staging by dividing
the program into different time steps, or stages. Stages are indicated using quotes .<e>. and splices
.∼(e). Quoting code delays its execution to the next stage; splicing advances it to the previous
stage. The current stage is the difference between the number of surrounding quotes and splices.
The execution order is then exactly the stage order: execution only happens at stage 0. Importantly,
each stage has its own independent context, and each stage-𝑛 variable can only be bound to a
stage-𝑛 binder, or, specifically in MetaOCaml, a stage-𝑚 binder with𝑚 ≤ 𝑛 thanks cross-stage
persistence [12]. Figure 2 shows the staged power function, where constructs are highlighted by
stage and variables coloured by their corresponding bindings.
With the implicit stage-specific context, MetaOCaml binds its free variables directly when the

next-stage code is created. For example, stage-1 free variable x on line 9 is bound to the stage-1
binder on line 8. This is in contrast to Lys boxes, where free variables are explicitly carried in their
types and are only instantiated when used.

This is the property that enables symbolic evaluation. It is expressed as functions of type A code
-> B code, which constructs a B code within which the input A code is spliced into various
places. Because the input has all its free variables statically bound when it was constructed, all free
variables the output B code inherits will also be bound in that same context. In other words, the
output implicitly depends on the context of the input. For example, given n, aux n .<x>. (line 9)
reduces to an int code containing the variable x, which is bound to the same stage-1 binder on
line 8 as the input.
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B CASE STUDIES
B.1 Stream Fusion

1 (* Pull streams (3) *)

2 datatype ('a, 's) stream_shape = Nil | Cons of ('a * 's);;

3 datatype 'a stream = St of (exists 's. ('s * ('s -> ('a, 's) stream_shape)));;

4

5 (* Simple staging (4.2) *)

6 datatype 'a st_stream = St_staged of (exists 's. ([]'s * ([s: 's |- ('a, 's)

stream_shape ])));;

7

8 (* Fusing the stepper using CPS (5.1, the furthest we went) *)

9 datatype 'a st_stream_2 = St_staged_2 of (

10 exists 's.

11 ([]'s *

12 ['fold_loop_type , 'fold_z_type , 'o;

13 cons_cont:

14 [fold_loop: 'fold_loop_type , fold_z: 'fold_z_type , a: 'a, t:'s |- 'o]

15 |-

16 [fold_loop: 'fold_loop_type , fold_z: 'fold_z_type ,

17 state:'s, nil_cont: 'o |- 'o]])

18 );;

Fig. 3. Stream types for reproducing Strymonas [7] (labeled with the corresponding section names)

B.2 Tagless final interpreter of STLC
We present the a code fragment of the tagless final embedding in fig. 4.

1 datatype ('a, 'h) repr = [h: 'h |- 'a];;

2

3 let lam: forall 'a. forall 'b. forall 'h. ('b, ('a * 'h)) repr -> ('a -> 'b, 'h)

repr = fun (b: ('b, ('a * 'h)) repr) ->

4 let box u = b in

5 (box (h: 'h |- fun (x: 'a) -> u with ((x, h))));;

6 let app: forall 'a. forall 'b. forall 'h. ('a -> 'b, 'h) repr -> ('a, 'h) repr ->

('b, 'h) repr

7 = fun (f: ('a -> 'b, 'h) repr) -> fun (x: ('a, 'h) repr) ->

8 let box ff = f in

9 let box xx = x in

10 (box (h: 'h |- (ff with (h)) (xx with (h))));;

11

12 (* De Bruijn indices *)

13 let z: forall 'a. forall 'h. ('a, ('a * 'h)) repr

14 = (box (h: ('a * 'h) |- match h with (a, h) -> a));;

15 let s: forall 'a. forall 'b. forall 'h. ('a, 'h) repr -> ('a, ('b * 'h)) repr

16 = fun (x: ('a, 'h) repr) ->

17 let box u = x in

18 (box (h: ('b * 'h) |- match h with (b, h) -> u with (h)));;

Fig. 4. Fragment of a staged tagless final interpreter of STLC in Lys
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