
Théo Chengkai Wang

Type-safe multi-stage programming

with Lys

Computer Science Tripos – Part II

Churchill College

May, 2023

Declaration of originality

I, Théo Chengkai Wang of Churchill College, being a candidate for Part II of the Computer

Science Tripos, hereby declare that this dissertation and the work described in it are my own

work, unaided except as may be specified below, and that the dissertation does not contain

material that has already been used to any substantial extent for a comparable purpose. In

preparation of this dissertation I did not use text from AI-assisted platforms generating natural

language answers to user queries, including but not limited to ChatGPT. I am content for my

dissertation to be made available to the students and staff of the University.

Signed Théo Chengkai Wang

Date May 12, 2023

ii

Proforma

Candidate Number: 2337G

Project Title: Type-safe multi-stage programming with Lys

Examination: Computer Science Tripos – Part II, May, 2023

Word Count: 119921

Code Line Count: 131222

Project Originator: The candidate and Prof. Alan Mycroft

Supervisor: Prof. Jeremy Yallop and Prof. Alan Mycroft

Original Aims of the Project

This project aims to explore the power of Contextual Modal Type Theory (CMTT) [39] for

Multi-Stage Programming (MSP). To do so, we aim to design and implement an interpreter for

Lys, a new language containing the relevant primitives for MSP. Lys should then be evaluated

regarding its correctness, performance and expressiveness compared to other paradigms.

Work Completed

Exceeded all success criteria and completed several challenging extensions. Lys is a practical

MSP language extending CMTT with recursion, System-F parametric polymorphism, exis-

tential types, algebraic datatypes, and imperative programming. Lys was also enriched with

polymorphic boxes and first-class lifting. Then, I used Lys as a research platform to imple-

ment a corpus of practical, non-trivial and sometimes novel staged programs and empirically

demonstrated that Lys is correctly implemented, achieves non-negligible linear speed-ups, is as

expressive as the generative fragment of ν□, and has pros and cons compared to MetaOCaml.

The limitations discovered can directly motivate latest CMTT research.

Special Difficulties

None.

1This word count was computed using texcount (https://app.uio.no/ifi/texcount), with %TC:group

table 0 1 and %TC:group tabular 1 1 to include tables.
2This line count was completed with cloc for OCaml code, and git ls-files | grep ’.lys$’ | xargs

cat | wc -l for Lys code.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 MSP: a taster . 1

1.3 Aims of the project . 2

2 Preparation 3

2.1 Multi-stage programming (MSP) . 3

2.1.1 Informal definition . 3

2.1.2 Applications . 3

2.2 Type systems, Logic and the Curry-Howard correspondence 4

2.3 Types for MSP . 5

2.3.1 Staging the power function: hacking the evaluation order 5

2.3.2 A Modal Type Theory . 6

2.3.3 Contextual Modal Type Theory (CMTT) 7

2.4 Starting Point . 9

2.5 Requirements Analysis . 9

2.6 Software Engineering . 10

2.6.1 Methodology . 10

2.6.2 Language choice . 12

2.6.3 Tools and Licensing . 12

3 Implementation 13

3.1 Core Design Principles . 13

3.2 Lys: from CMTT to a practical MSP language 13

3.3 Zooming in the design . 15

3.3.1 Parametric Polymorphism . 15

3.3.2 Lifting . 17

3.3.3 Imperative programming . 19

3.4 Lys language implementation . 20

3.4.1 Repository overview . 20

3.4.2 Lexer and Parser . 21

3.4.3 Preprocessing . 22

3.4.4 Type-checker . 22

3.4.5 Interpreters . 22

3.4.6 Software engineering techniques and practices 23

iv

3.5 Summary . 23

4 Evaluation 24

4.1 Correctness . 24

4.1.1 The Lys type system . 24

4.1.2 The Lys interpreter . 25

4.2 Performance . 25

4.2.1 Experimental setup . 26

4.2.2 A first example: staging the WHILE language 26

4.2.3 Further Experiments and Results . 29

4.2.4 Caveats . 30

4.3 Expressiveness . 33

4.3.1 Overview . 33

4.3.2 Lys and ν□ . 34

4.3.3 Lys and MetaOCaml . 35

4.4 Summary . 38

5 Conclusion 39

5.1 Lessons learnt . 39

5.2 Future work . 40

Bibliography 40

A More implementation 45

A.1 Algebraic datatypes . 45

A.2 Existentials . 46

B More Evaluation 48

B.1 Correctness . 48

B.1.1 Type theoretical correctness: table of proofs in ICS4 48

B.1.2 Staged Pow execution trace . 48

B.2 Performance . 51

B.2.1 Initial experiments showing the distribution of runtimes 51

B.2.2 Uncertainty propagation for quotients . 51

B.2.3 Fibonacci in Flowchart . 51

B.3 Expressiveness . 52

B.3.1 Translating ν□ to Lys . 52

B.3.2 MetaOCaml . 54

C Project Proposal 55

v

List of Figures

2.1 Syntax of the simply typed lambda calculus . 4

2.2 Syntax of λ□ . 6

2.3 Syntax of CMTT . 8

2.4 Typing rules of CMTT . 8

2.5 Dependency graph of the project . 11

2.6 GitHub commit graph: contributions to main, excluding merge commits and bot

accounts throughout the project . 11

3.1 Lys syntax (where the CMTT fragment is in blue) 14

3.2 Polymorphic map function . 16

3.3 Staged polymorphic map function . 17

3.4 Two implementations of lift int . 18

3.5 Imperatively staged pow . 19

3.6 Staged imperative pow . 20

3.7 Interpreter pipeline . 21

3.8 Excerpt of mutually recursive module signatures in Ast 23

4.1 AST definition of the WHILE language . 27

4.2 A WHILE program compiled to Lys . 28

4.3 Scenario 1 experiments on staging the WHILE interpreter with the Fibonacci

program as the static input. 28

4.4 Scenario 2 experiment on staging the WHILE interpreter: time taken to run the

1-stage program VS the 2-stage program in one go 29

4.5 Flowchart AST in Lys . 31

4.6 Datatype definitions for staged stream fusion in Lys 32

4.7 Example stream pipeline and code generated by the efficient implementation

of stream fusion, accomplishing exactly the same staging as Kiselyov et al. in

section 5.1 of [25] . 32

4.8 Translating pow from ν□ (on the left) [38, p. 81] to Lys (on the right) 35

4.9 Staged power function in MetaOCaml . 36

4.10 Witnesses of the type isomorphism between A code -> B code and (A -> B)

code [44] . 37

4.11 Moving the deconstruction of data structures fro stage 1 to stage 0 in MetaOCaml 37

B.1 Empirical distribution of execution times for the staged while interpreter spe-

cialised with fib applied to 100 . 51

vi

List of Tables

2.1 The Curry-Howard Correspondence as presented in II types [27] 5

2.2 Table of deliverables and Risk Analysis . 10

2.3 Used tools . 12

3.1 Repository overview . 21

4.1 Incomplete list of staged Lys programs . 26

4.2 Table of benchmarks . 29

4.3 Experiment results (with 95% confidence). 30

4.4 Taxonomy of the code construct between Lys and two related paradigms. . . . 33

B.1 Valid propositions in ICS4 and their Lys proofs 48

vii

viii

Acknowledgements

I would like to express my gratitude to my supervisors, Professors Jeremy Yallop and Alan

Mycroft, for their passion for the subject, kindness and support throughout this journey. I am

also grateful to Yulong Huang for his always insightful advice. Additionally, I am sincerely

grateful to my Director of Studies, Dr John Fawcett, both for his helpful comments and for

his support and mentorship throughout the last three years. Finally, I would like to thank my

friends, family, and Lily, who are always there for me.

Chapter 1

Introduction

This dissertation explores the power of an under-explored type-theoretical approach to multi-

stage programming (MSP), both a technique in metaprogramming and a philosophy om-

nipresent across Computer Science. We do so by creating a language, Lys, and demonstrating

its practical power. This chapter presents the motivation, the related work and the aims of the

project.

1.1 Motivation

In Aho and Ullman’s words, computer science is a “science of abstraction”: concrete applica-

tions motivate abstract theories, abstract ideas inspire new applications. This is particularly

true for programming languages, as Landin [28] and later Chatley et al. [6] argue.

Abstraction, however, does not always play well with performance, often introducing signifi-

cant overheads. Staging is a common algorithmic technique used to eliminate this overhead,

by translating higher-level to lower-level abstractions in stages. Examples include compilers,

metaprogramming systems (C++ templates [1]), etc.

However, not all programs with multiple inputs are naturally separable into separate proce-

dures, as stages tend to be more intertwined and interconnected. Thus we consider the staging

of single programs, both manually and automatically. On the manual side, Lisp [32] can per-

form run-time metaprogramming by manipulating programs as data using quote and eval; on

the automatic side, partial evaluation (PE) [21] allows for automatic symbolic evaluation of

programs with respect to their known (static) inputs. However, as argued in [10], both suffer

from the lack of guarantees (e.g. type preservation, variable capture (lack of hygiene) in Lisp,

non-termination in PE ...). This is where (typed) multi-stage programming (MSP) comes in.

1.2 MSP: a taster

Consider the function pow computing the nth power of x.

1 let rec pow n x = if n = 0 then 1 else x * pow (n-1) x

1

2 CHAPTER 1. INTRODUCTION

In a way, pow provides an abstraction. For any n, it gives a function int -> int which can

compute the nth power of its input. However, if we knew n in advance, this abstraction would

be cumbersome: at each step, instead of just multiplying, we unroll the fixpoint, check if n = 0,

and do a recursive call.

MSP eliminates exactly this overhead. The concept is simple: we divide this program into two

stages and use type-theoretical constructs to force the program to be reduced exactly in that

order. Stage 0 produces a piece of compiled code with respect to the first input n: box (x:int

|- x * x * ... x * 1) (n times), of type [x:int]int (meaning piece of code of type int

depending on a free variable x of type int). Stage 1 can then efficiently compute xn without

any abstraction overhead.

Intuitively, we are changing the reduction order of the lambda calculus: this does not affect

the result, by confluence, but does affect the number of reduction steps required, making later

stages more efficient by moving the overhead to earlier ones. Two approaches emerged:

• λ⃝ [9], motivated by binding time analysis (program analysis associating binding times

to each binder) in partial evaluation and based on linear temporal logic, allows the pro-

grammer to annotate the program with binding times (the stage where a binder’s value

will be known) and enforce staged execution in that order. This forms an elegantly com-

positional calculus of (open, i.e. with free variables) code, but lacks the ability to express

that a piece of generated code is closed (no free variables), which motivated refinements

along the line of work of MetaML [46].

• λ□ [10], motivated by runtime code generation based on modal S4 logic, requires the

programmer to make semantic preserving transformations to the program to make the

modified evaluation order explicit. This calculus is limited because it enforces that all

code generated be runnable, hence closed. This motivated relaxations along the line of

work of contextual modal type theory (CMTT) [39].

1.3 Aims of the project

There is abundant previous work on practical multi-staged programming along MetaML’s de-

scendants [46, 47, 34, 22]. There is also abundant theoretical work on CMTT [39, 14, 42, 20].

However, until recently, very few have employed CMTT for the implementation of practical

multi-staged programs like embedded DSLs or stream fusion libraries, due to the lack of a

practical language based thereon. It is in this lacuna that this project aims to insert itself. In

other words, I aim to answer: how good is CMTT as a practical MSP paradigm?

To explore this question, I design and implement (chapter 3) an OCaml-like MSP language

based on CMTT (chapter 2) specifically for multi-stage programming. By implementing a

large corpus of practical programs, I evaluate (chapter 4) Lys both in terms of its performance

and its expressiveness, as compared to other paradigms.

Chapter 2

Preparation

This chapter presents the background theory: Multi-Stage Programming (section 2.1), the

Curry-Howard correspondence (section 2.2), and its application in MSP, with modal type the-

ories and Contextual Modal Type Theory (section 2.3). Then, section 2.4 presents the starting

point and aims, section 2.5 analyses the requirements, and section 2.6 sets out the software

engineering practices employed.

2.1 Multi-stage programming (MSP)

2.1.1 Informal definition

Let f be a curried function with arguments s1...sm, d1...dn, where s1...sm are inputs known at

the current stage (static inputs [21]), and d1...dn are inputs known on a later stage (dynamic

inputs [21]), then we want to transform f to some function f ′ such that f ′ s1 ... sm outputs the

code of a specialised function f ′
s⃗ which, when evaluated at the next stage with the dynamic

input, outputs the result we wanted.

In general, in MSP, the two-stage blueprint f is generalised to any number of stages.

2.1.2 Applications

MSP has a wide range of applications, some of which we explore in this dissertation. Examples

might include implementing runtime code optimisations, signal processing (e.g. compiling con-

volution kernels), or even machine learning (JIT compilation in the Jax library), or anywhere

exhibiting room for potential improvements by dividing the execution into stages and moving

abstraction overheads to earlier stages.

One common application is in efficiently embedding domain-specific languages (DSL). Consider

a DSL D to be embedded in a host MSP language L. If we write an interpreter interp d:

program -> input -> output for D in L, and stage it, then we get a program interp d’:

program -> [input]output, which is effectively a program generating code in L doing exactly

what the D program does. We have thus created a compiler from D to L, also known as the

first Futamura projection in PE [13].

3

4 CHAPTER 2. PREPARATION

Types A ::= 1 | A1 → A2

Terms e ::= () | x | λx.e | e e′

Figure 2.1: Syntax of the simply typed lambda calculus

In fact, MSP can be seen as a manual version of PE. I argue in section 4.2.4 that this lack

of automation is in fact a virtue: the programmer has control over termination behaviour

and power to use domain-specific knowledge to optimise code generation, impossible with an

automatic partial evaluation black box.

Where do we find such constructs able to manually achieve partial evaluation while providing

safety guarantees? This is where type systems come in.

2.2 Type systems, Logic and the Curry-Howard corre-

spondence

Type systems are logical systems which assign properties (types) to pieces of programs, expres-

sions or values (terms). For example, typical simply typed systems may assign the type int

to 1, function type A → B to λx.M where M is of type B if x is of type A. They form a

fundamental building block of programming languages, as they facilitate programming, help

avoid programmer mistakes, and provide guarantees on the program’s correctness properties.

Formally, consider a simple type system for the lambda calculus, the simply typed lambda

calculus (STLC), the syntax of which is presented in fig. 2.1. We define typing judgments as

Γ ⊢M : τ , meaning in the context Γ (containing binders and their types), the term M has type

τ . Then, we can define the rule for functions informally presented above:

Γ, x : A ⊢M : B
→ I

Γ ⊢ λx.M : A→ B

Strikingly, when presented under this form, certain type systems for the lambda calculus like

this one can correspond exactly to logical systems. Consider implication in a natural deduction

system for intuitionistic propositional logic (IPL). It is easy to see that to prove the proposition

A→ B we simply assume A and prove B.

Γ, A ⊢ B
→ I

Γ ⊢ A→ B

As noticed by Curry and Howard, if we take types as propositions, this rule for implication

corresponds exactly to the typing rule for function types presented above. Programs are then

used as proofs, and type-checking is the process of checking that a proof for a particular

proposition is correct. This is the Curry-Howard correspondence.

An incomplete list of corresponding items between type systems and logic is presented in

table 2.1, taken from [27].

2.3. TYPES FOR MSP 5

Logic Type Theory

Proposition Type

Proof Program

Implication Functions

Normal Form Value

Proof normalisation Evaluation

... ...

Table 2.1: The Curry-Howard Correspondence as presented in II types [27]

The Curry-Howard correspondence bridges logic and theoretical computer science with the

design of practical programming languages: type systems serve as elegant proof systems for

certain logical systems, and more importantly for us, logical constructs can directly mo-

tivate constructs/primitives used to formalise existing concepts and practices. We

see in section 2.3 that this is exactly how we obtained a formal type system for multi-stage

programming.

2.3 Types for MSP

2.3.1 Staging the power function: hacking the evaluation order

Let us try to understand staging by considering the previous example with the power function,

in the style of Davies and Pfenning [10] and Nanevski et al [37].

We start with the following and keep in mind that we want to isolate out the computation

involving n and force it to be done first.

1 let rec pow n x =

2 if n = 0 then 1

3 else x * pow (n-1) x

Here, due to the call-by-value reduction order, no evaluation is done under a lambda binding,

so nothing would be evaluated given n if we kept the binder x outside. To get around this

restriction, we pull everything involving n out and push everything involving x in. This way,

all the computation involving n can be done first, independently of the value of x. We do so

via semantic preserving syntax tree permutations and let-bindings.

1 let rec pow ' n =

2 if n = 0 then fun x -> 1

3 else let pow_n_min_1 = pow (n-1) in

4 fun x -> x * pow_n_min_1 x

Much better. In this formulation, the stages have been made explicit. Operationally, when

applied on n, it reduces to a function which does not depend on n at all. We have thus

isolated the stages in a rather natural way: in the first stage, we have the information on n,

and we can specialise the function with respect to n, before getting x in the second stage.

In fact, assuming left-to-right call-by-value operational semantics we would get:

6 CHAPTER 2. PREPARATION

Types A ::= A1 → A2 | b | □A
Terms e ::= c | x | u | λx.e | e e′ | box(e) | let box u = e in e′

Context Γ ::= · | Γ, x : A

Modal Context ∆ ::= · | ∆, u :: A

Figure 2.2: Syntax of λ□

pow 2⇝∗ fun x -> x * (fun x -> x * (fun x -> 1) x) x

which indeed does not depend on n. It does contain some spurious redexes, which we come

back to in section 2.3.3.

2.3.2 A Modal Type Theory

In section 2.3.1, pow and pow’ have the same type, and there is no indication of stages, and no

way of knowing if a piece of code is of the current stage, or to be generated in the next stage.

We want some construct such that this code generation at run-time becomes explicit.

This forms part of the motivation behind λ□ [10], the syntax definition of which is as in fig. 2.2.

Davies and Pfenning took the Modal operator □ from an intuitionistic version of modal S4

logic (IS4), and used the Curry-Howard correspondence (section 2.1) to obtain a primitive

which they named box.

Recall that in modal S4 logic [19], □A means that A is true in all worlds reachable from the

current world (because □ is reflexive and transitive over the accessibility relation). Then, a

box, i.e. a proof of □A, corresponds to a piece of code which does not depend on the context

of the current world, i.e., a piece of code without free (intuitionistic) binders. Moreover, the

proof of □A must be able to serve as a proof of A in any world. This naturally gives a way of

composing pieces of code: unboxing a piece of code and binding it to a meta-variable u to be

later spliced in.

Therefore, the typing judgement now looks like ∆; Γ ⊢ e : A, where Γ is the context of the

current world (containing the ‘normal’, object-level variable bindings), and ∆ is the modal

context representing propositions true in all worlds (containing the modal or meta variables, so

named because they are bound to pieces of unboxed code). We now present the box construct

in terms of its introduction and elimination rules, following the tradition.

∆; · ⊢ e : A
□I

∆;Γ ⊢ box(e) : □A

∆;Γ ⊢ e : □A ∆, u :: A; Γ ⊢ e′ : C
□E

∆;Γ ⊢ let box u = e in e′ : C

Informally, the number of surrounding boxes indicates the stage, and no reduction happens

inside boxes. Evaluation of unboxing is done with meta-substitution (as we are substituting

2.3. TYPES FOR MSP 7

for a meta-variable), which, unlike normal substitution, is able to cross stages (substitute into

boxes).

letbox
let box u = box(e1) in e2 ⇝ Je1/uKe2

The box construct can be seen and implemented as a code generator [49] which generates code

usable in the future stages, which is exactly what we wanted.

Now, turning back to the power function, we nicely get, using Lys syntax:

1 let rec pow: int -> [](int -> int) = fun (n:int) ->

2 if n = 0 then box (fun x -> 1)

3 else

4 let box pow_n_min_1 = pow (n-1) in

5 box (fun (x: int) -> x * pow_n_min_1 x)

And running this with input 2 does give, as expected:

pow 2⇝∗ box (fun x -> x * (fun x -> x * (fun x -> 1) x) x)

This code generation procedure is still operationally unsatisfactory because of the spurious

redexes. While it was argued in the original paper [10] that the elimination of such redexes

could be handled by the implementation, we proceed to use a simple solution that eliminates

them on the type-theoretical level.

2.3.3 Contextual Modal Type Theory (CMTT)

The requirement in λ□ that all code is closed made it necessary to use a boxed function□(int→
int) and introduced redexes which cannot be symbolically reduced.

What if we could have a boxed function type where we can force the (symbolic/call-by-name)

β reduction when we splice it in? This is achieved by CMTT, logically stemming from a

contextual relaxation of IS4 on which λ□ is based, called ICS4. Operationally, it provides an

alternative boxed function which exactly achieves this eager substitution.

The boxed type is now written as [Ψ]A (or sometimes [Ψ ⊢ A] [36, 20]), where Ψ is a context

(a list of variables and their corresponding types). This reads: for all worlds accessible from

the current world such that the context Ψ is satisfied, A is true. We now write box (Ψ ⊢ e)

for a boxed piece of code. Then, application (which in the literature is called the “closure of

the piece of unboxed open code”) is expressed with the with keyword: u with (σ) where σ is

an explicit substitution, i.e. a list of expressions (e1, e2, ...) to be substituted in, of the same

length as the context Ψ which u depends on (note that those expressions need not be values

and are substituted in as in call-by-name semantics). The new syntax is presented in fig. 2.3.

8 CHAPTER 2. PREPARATION

Types A ::= A1 → A2 | b | [Ψ]A

Terms e ::= c | x | u with (σ) | λx.e | e e′ | box (Ψ ⊢ e) | let box u = e in e′

Context Γ,Ψ ::= · | Γ, x : A

Modal Context ∆ ::= · | ∆, u :: A

Figure 2.3: Syntax of CMTT

Typing is then as in fig. 2.4.

hyp
∆; (Γ, x : A,Γ′) ⊢ x : A

∆, u :: A[Ψ],∆′; Γ ⊢ σ : Ψ
ctxhyp

∆, u :: A[Ψ],∆′; Γ ⊢ u with σ : A

∆;Γ, x : A ⊢ e : B
→ I

∆;Γ ⊢ λx. e : A→ B

∆;Γ ⊢ e : A→ B ∆;Γ ⊢ e′ : A
→ E

∆;Γ ⊢ e e′ : B

∆; · ⊢ e : A
□I

∆;Γ ⊢ box (Ψ ⊢ e) : [Ψ]A

∆;Γ ⊢ e : [Ψ]A ∆, u :: A[Ψ]; Γ ⊢ e′ : C
□E

∆;Γ ⊢ let box u = e in e′ : C

∆;Γ ⊢ e1 : B1 . . . ∆;Γ ⊢ en : Bn
sub

∆; Γ ⊢ (e1, . . . , en) : (y1 : B1 . . . yn : Bn)

Figure 2.4: Typing rules of CMTT

Operationally, when unboxing and splicing a box in, we need to close it with an explicit

substitution σ (fig. 2.4 ctxhyp rule). The unboxing is, as before, done with meta-substitution,

as shown below.

letbox
let box u = box(Ψ ⊢ e1) in e2 ⇝ JΨ.e1/uKe2

However, we define meta-substitution to take the context of the box in and traverse the expres-

sion e2. When it encounters an occurrence of u coupled with explicit substitution σ, instead of

leaving a redex, it would close e1 eagerly with σ via simultaneous substitution, as follows:

JΨ.e/uK u with σ =[(JΨ.e/uKσ)/Ψ]e

JΨ.e/uK u′ with σ =u′ with (JΨ.e/uKσ) (u′ ̸= u)

This way, we get a construct very suitable for expressing open code, but which at the same

time permits the evaluation of code very naturally via unboxing, as we are guaranteed that

apart from what is specified in the context, the boxed expression must be closed.

2.4. STARTING POINT 9

1 let rec pow: int -> [x:int]int = fun (n: int) ->

2 if n = 0 then box (x: int |- 1)

3 else

4 let box pow_n_min_1 = pow (n-1) in

5 box (x: int |- x * pow_n_min_1 with (x))

Using exactly the same operational semantics as λ□ with different definitions for substitutions,

we evaluate pow on 2 and obtain indeed box (x: int |- x * x * 1), without any spurious

redex.

In Lys, I implement CMTT with a few tweaks and additions. The process of staging programs

resembles what we have seen so far: we pull everything in earlier stages out and push every-

thing in later stages inside boxes. We present the implementation of a few example programs,

e.g. staged interpreters, staged regular expression matchers [38], and as we see in section 4.3,

staging is often not as straightforward as it seems.

2.4 Starting Point

The starting point is the same as declared in the proposal. I had no previous experience in

writing interpreters, compilers or designing/implementing programming languages, nor with

doing so in OCaml, apart from the relevant courses1. Prior to the project, I read related

literature and played with MSP languages, but never implemented MSP mechanisms.

2.5 Requirements Analysis

The project’s requirements are largely based on the success criteria stated in the proposal. We

choose to implement CMTT over ν□ because the former is a refinement of the later. The main

goal being the evaluation of CMTT’s practical strength, we choose to implement an OCaml-like

language as a research platform on top of the barebone type theory that Nanevski et al. [39]

present. This section overviews the refinements and choices made in the project planning stage.

Because extending type theories can have unforeseeable complexities, the Core deliverables

focus only on implementing a full interpreter for a Turing-complete extension of

CMTT with basic constructs, primitives, simple composite types (binary products and sums)

and algebraic datatypes (stretch requirement which turned out essential). This includes a lexer

& parser, an implementation of the CMTT type system and an evaluator.

OCaml-like features like polymorphism and data abstraction are left as extension deliver-

ables, for they are not critical to the project’s success, but broaden the scope of the evaluation.

Unfortunately, the implementation of certain features conflicts directly with other features, and

trade-offs were made with respect to their relevance to evaluation: for example, System-F style

polymorphism renders type inference undecidable [48], and generatively polymorphic boxes

make it hard to perform code pattern-matching without complex extensions [20], but they

enable the expression of complex, real-world applications like stream fusion.

1IA Foundations of Computer Science (FoCS), IB Semantics, Compiler Construction, Concepts of Program-

ming Languages, II Type Theory, Denotational Semantics, Category Theory, Optimising Compilers

10 CHAPTER 2. PREPARATION

Phase ID Deliverable Priority Risk

PREP.

LIT Literary review Critical Low

SPECS Language specs Critical Low

FEAS Feasibility of extensions Medium Low

IMPL.

CORE-parser Lexer and Parser Critical Low

CORE-types Type checker Critical Low

CORE-int Interpreter for the core language Critical Low

EXT-adt Abstract Datatypes and Pattern-Matching Critical Medium

EXT-usab Appropriate extensions for usability (sup-

port for strings, a top-level REPL, etc.)

Medium Low

EXT-poly Generative polymorphism (System F-

style)

Low High

EXT-ref References and Imperative programming Low High

EXT-exist Existential types Low High

EVAL.

CORR Test the correctness of the project Critical Low

PROG-main Program to test: corpus of programs to

test (regular expression matcher, convolu-

tion, list processing, interpreters)

Critical Medium

PROG-ext Program to test using the extensions Low Medium

QUANT-perf Quantitative: Measure the relative perfor-

mance of staged vs non-staged programs

High Low

QUAL-diff Qualitative: investigate the differences

with other paradigms like MetaOCaml

Medium Medium

Table 2.2: Table of deliverables and Risk Analysis

Finally, we provide a corpus of programs relevant to each feature and evaluate the imple-

mentation with respect to correctness, performance benefits and expressiveness.

Table 2.2 presents the deliverables and fig. 2.5 the dependency graph. Note that EXT-adt has

been placed in the core deliverables, as mentioned above.

2.6 Software Engineering

2.6.1 Methodology

Based on the requirements analysis, this project is particularly amenable to the spiral model

[2]. Structurally, it can be split into two phases: accomplishing the core deliverable, and using

it as a research platform to explore different language features.

Due to the research adjacent nature of the project, the feasibility of both the core project (hence

the choice of calculus stated in the proposal) and almost all of my extensions was unknown a

priori. Thus, for each deliverable, I first perform a thorough risk analysis (cf. table 2.2) by

reviewing the literature to ensure that (1) the feature is desirable and has particular applications

and (2) it is feasible and the trade-offs are acceptable according to the design principles (section

3.1). For example, System F polymorphism was implemented because (1) it enables applications

2.6. SOFTWARE ENGINEERING 11

Figure 2.5: Dependency graph of the project

Figure 2.6: GitHub commit graph: contributions to main, excluding merge commits and bot

accounts throughout the project

like stream fusion and (2) because it is feasible [20] and trade-offs are acceptable (loss of type

inference and code pattern-matching).

Then, I produce a particular design, discuss the trade-offs with my supervisors during the

weekly meetings, and proceed to implement it. To structure each deliverable’s implementation

plan, I adapt methods from the Agile model, structuring my work into two-week sprints and

tracking them through GitHub’s Kanban board [30] (counting a total of 72 tickets). This proved

particularly fruitful when re-planning after unexpected delays or infeasible extensions, as I was

able to maintain regularity of contribution throughout (fig. 2.6).

Finally, I evaluate the extension by attempting to implement example programs for the corpus,

inspecting their qualitative behaviour and estimating speed-ups.

Moreover, throughout the project, I ensure that software engineering practices are respected.

I use Git and GitHub for version control and standard build tools like dune. I use the OCaml

Core standard library which supports an elegant module-oriented programming style, taking

12 CHAPTER 2. PREPARATION

Tool Use License

OCaml Main implementation language LGPL

dune Build system MIT

opam OCaml’s package management system LGPL

core Standard library MIT

core bench Benchmarking library MIT

mtime Monotonic clock for benchmarking ISC

ounit2 Unit tests MIT

ppx jane Type-driven code generation extensions MIT

ppx deriving Type-driven code generation extensions for generating a

pretty-printed show function

MIT

menhir Parser generator LGPL

ppx csv conv Type-driven code generation extensions for generating

CSVs

MIT

Python Language for data analysis PSF

numpy Vectorised computations BSD

matplotlib Data visualisation PSF

pandas Dataframe processing BSD

scikit-learn For simple regressions in data analysis BSD

Table 2.3: Used tools

advantage of type-driven generation extensions (ppx extensions) for pretty-printing, serialisa-

tion and generating utility functions, and including docstrings and comments to ensure code

readability. I also perform unit testing and make sure to include regression tests after each

debugging session.

2.6.2 Language choice

For the main implementation, I made the language choice between Haskell [31] and OCaml

[29] during the first work package. The former is a lazy call-by-need functional language with

features such as monadic I/O etc. and the latter is a strict functional language based on ML.

Although Haskell is elegant and has a much bigger community and ecosystem, I chose OCaml

for 3 reasons. Firstly, I am more familiar with OCaml thanks to IA FoCS. Secondly, OCaml

compiles faster and gives a more predictable performance, vital for having meaningful results

in my evaluation section. Finally, the existence of big industry contributors to open-source

libraries can make up for a smaller community as mentioned above.

For data analysis during evaluation, I used Python 3.8 because of its great support for data

science applications and visualisation.

2.6.3 Tools and Licensing

I include a list of tools I used, their purposes, and their licenses in table 2.3. I open-sourced my

implementation under the MIT license, which is compatible with all listed licenses, including

LGPL-licensed OCaml tools thanks to their linking exception.

Chapter 3

Implementation

This chapter covers the implementation of the project in four sections. I lay down the core

design and implementation principles, present an overview of Lys’ design, and dive into the

technical challenges. Finally, I present the implementation of the core deliverable of the project

– the Lys interpreter – along with the software engineering techniques and practices employed.

3.1 Core Design Principles

Recall from section 1.3 that Lys is designed as a practical OCaml-like language extended with

CMTT’s features to explore its power and limitations as an MSP paradigm by writing real

programs. With this in mind, I present some of the core design and implementation principles

fueling the various subtle trade-offs made.

1. Aim for expressive power comparable to MetaOCaml, even if detrimental to purity and

safety.

2. Avoid features that make it hard to extend the language, even if they are easy to imple-

ment in the interpreter.

3. Ensure that the implementation is correct and easily formally verifiable. This means that

simplicity of implementation is more important than usability or performance,

which is acceptable as the evaluation focuses on relative rather than absolute performance.

4. Avoid unnecessary formalisation, especially when correctness is evident.

3.2 Lys: from CMTT to a practical MSP language

CMTT is a theoretical calculus, suitable for proving properties but not for any practical pro-

gramming. Lys, on the other hand, is a practical OCaml-like language embodying its

features. We present its syntax in fig. 3.1.

13

14 CHAPTER 3. IMPLEMENTATION

(* Program *)

P ::= · | D; ;P

(* Top level definitions and commands *)

D ::= let x : τ = e | let rec f1 : τ1 = e1 and ...fn : τn = en | e | REPL COMMAND

(* Expession *)

e ::= x | c | fun x : τ → e | e e′ | let rec f1 : τ1 = e1 and ...fn : τn = en in e′ | ...
(* System F polymorphism with ADTs *)

| α.e | e[τ] | C[τ] (e1, ...en)

(* Polymorphic CMTT *)

| box (α1, ...αm;x1 : τ1...xn : τn ⊢ e) | let box u = e in e′ | u with [τ1, ...τm](e1, ...em)

| lift [τ](e)

(* Pattern matching (for ADTs) *)

| match (x1, x2, ..., xn) with (p1,1, p1,2, ..., p1,n)→ e1|...|(pm,1, pm,2, ..., pm,n)→ em

(* OCaml style Imperative Programming *)

| !e | e := e′ | ref e | [| e1, ...en |] | e.(e′) | e.(e′)← e′′ | e; e′ | while e do e′ done

(* Existential types *)

| pack (∃α.τ, τ ′, e) | let pack (α, x) = e in e′

Figure 3.1: Lys syntax (where the CMTT fragment is in blue)

We start with CMTT (in blue), translated to an ML-like syntax for familiarity, and type

annotations because we do not yet support type inference. We provide a wrapping structure

suitable for read-evaluation-print loop (REPL) implementations. A Lys program P is then

defined as a list of top-level commands, D, which can be variable definitions, expressions to be

executed, or commands specific to the Lys REPL.

Then, we gradually extend the language following the desiderata of practical programming

languages below:

• Turing completeness: recursive functions

• Basic usability: strings, composite types (n-ary products, sum types), primitives, basic

control flow etc.

• Data structures: polymorphic algebraic datatypes (ADT) + shallow pattern-matching

[15] (which we did not extend to deep pattern matching by principle 3). Lys ADTs are

implemented as OCaml’s tagged variant types. [12]. Type-theoretically, they correspond

to isorecursive types : types of the form µα.τ where α is a type variable and τ is a type, such

that the following isomorphism holds: µα.τ ∼= {µα. τ/α}τ , (where {τ1/α}τ2 corresponds

to capture-avoiding type substitution). In other words, µ is a fixpoint combinator for

types, and a straightforward generalisation à la System Fω enables the expression of

3.3. ZOOMING IN THE DESIGN 15

polymorphic ADTs. More detail in appendix A.1.

• Stateful/imperative computations: OCaml-like imperative features like references

and arrays.

• Polymorphism/Genericity: System F (polymorphic lambda calculus) style parametric

polymorphism (extended with isorecursive types).

• Data abstraction: existential types of the form ∃α.τ [27], which resemble OCaml’s

module signatures with one hidden type denoted by α. Its constructor, of the form pack

(interface t, hidden t, e), provides the hidden type and implements the signature

∃α.τ . The destructor let pack(’a, x) = e in e’ has similar effects with OCaml’s let

open M in e construct: it unpacks the abstracted value and exposes it to client code e’.

More detail in appendix A.2.

Moreover, interactions between such features and contextual modal types compel us to modify

CMTT as follows:

• We add first-class lifting, enabling serialisation of a current-stage value, e.g. type A, to a

box containing its intensional representation1, of type □A. As discussed in section 3.3.2,

this construct is restricted to ground (non-functional and non-polymorphic) values and

has interesting interactions with references.

• We also extend boxes to support polymorphism within them as we detail in section 3.3.1.

We explore these interactions in more detail in section 3.3.

3.3 Zooming in the design

Lys’ simplicity hides the substantial effort behind its design. In this section, we discuss infor-

mally the design of several constructs, interesting not only in their practical value but also in

their non-trivial interactions with the contextual box type, often inducing necessary trade-offs.

A formal definition is not always presented (principle 4), but when it is, the typing sequent I

use will be as follows:

A; Σ;Θ;∆; Γ ⊢ e : A

where A is the store for array values or array store; Σ is the store for references or store; Θ

is the type variable context or type-var context ; ∆ is the metavariable context or the meta

context (as in CMTT); and Γ is the intuitionistic typing context, object context, or sometimes

just context.

3.3.1 Parametric Polymorphism

Motivation

Parametric Polymorphism is not a required feature per se. CMTT is monomorphic, and any

polymorphic function or data type can be defined as a series of monomorphic functions or data

types, one for each use with a different type. However, this is inconvenient. Additionally, Lys

1i.e. we construct a syntactic representation of the value by inspecting its internal structure.

16 CHAPTER 3. IMPLEMENTATION

1 datatype 'a list = Nil | Cons of ('a * 'a list);;

2

3 let rec map: forall 'a. forall 'b. 'a list -> ('a -> 'b) -> 'b list =

4 'a. 'b. fun (xs: 'a list) -> fun (f: 'a -> 'b) ->

5 match xs with

6 | Nil -> Nil['b]
7 | Cons (x, xs) ->

8 Cons['b] (f x, map ['a] ['b] xs f);;

Figure 3.2: Polymorphic map function

is a language with runtime code generation, and generating polymorphic code could greatly

reduce the number of such generations to be done at run-time.

Design

I choose to achieve parametric polymorphism in a System-F -like manner, which, in the Curry-

Howard sense, corresponds to second-order universal quantification (i.e. over types). In Lys, a

value e:τ can be parameterised with type variable α (written ’a concretely) to give a value α.e

of type ∀α. τ . Then, we can apply one such parameterised value with type application e[T].

Lys also has polymorphic algebraic data types, defined similarly as in OCaml. For example,

fig. 3.2 presents the definition of a polymorphic list type and a polymorphic map function.

Staging polymorphic code requires a non-trivial type-theoretical extension to CMTT. Naively,

the monomorphic box can be polymorphic in two ways: ’a. box (... |- ...) or box

(...|- ’a. ...). The former allows the box to be polymorphic, but any time we want to

unbox it, we have to specialise this box with respect to a specific type, so we cannot achieve

polymorphic code generation. The latter does allow this, but analogously to boxed functions

(subsection 2.3.2), leaves spurious redexes (type applications) behind. The solution, too, is

analogous. A box is henceforth defined as box (Φ;Ψ ⊢ e) where Φ is a type-var context, and

Ψ is the original context which can depend on the type-var context. Explicit substitutions

u with σ then becomes u with [ϕ](σ) where ϕ represents a simultaneous type substitution.

A polymorphic box is then typed as follows:

Φ ∩Θ = Ø Θ,Φ ⊢ Ψ ctx Θ,Φ ⊢ τ type A; Σ;Θ,Φ;∆;Ψ ⊢ e : τ
□I

A; Σ;Θ;∆; Γ ⊢ box (Φ;Ψ ⊢ e) : [Φ;Ψ ⊢ τ]

With polymorphic boxes, we can then perform the staging of the map function as in fig. 3.3.

We then get, as required:

map staged [int] (Cons[int] (1, Cons [int] (2, Nil[int]))

(fun (x: int) -> lift[int] x)

⇝∗

box (’b; f: (int -> ’b) |- Cons[’b] (f 1, Cons[’b] (f 2, Nil[’b])

Discussion

There are a few points to note.

3.3. ZOOMING IN THE DESIGN 17

1 let rec map_staged:

2 forall 'a. 'a list ->

3 ('a -> []'a) -> ['b; f:'a -> 'b |- 'b list] =

4 'a. fun (xs: ('a) list) -> fun (lift_a: 'a -> []'a) ->

5 match xs with

6 | Nil -> box ('b; f: 'a -> 'b |- Nil['b])
7 | Cons (x, xs) ->

8 let box u = map_staged ['a] xs lift_a in

9 let box x = lift_a x in

10 box ('b; f: 'a -> 'b |-

11 Cons['b] (f (x with ()), u with ['b](f)))
12 ;;

Figure 3.3: Staged polymorphic map function

• The staged polymorphic map function takes one additional argument – the lift function

which given a value of type ’a, converts it to a piece of code representing that value, of

type []’a. As explained in section 3.3.2, this is because we do not allow polymorphic

lifting.

• We could have avoided all of these type-related operations by completely ignoring type

annotations during evaluation. The new polymorphic box would not be necessary at all

in this case. However, since the focus of the project is on exploring the type theory and

not on the performance of the implementation, I opt for the more elaborate, type-theory-

driven approach.

• Interestingly, many datatypes such as lists can be embedded in System F style polymor-

phic lambda calculi in terms of the type of their destructors, as presented in II types [27].

This is, however, cumbersome for the programmer so I opted for algebraic data types

instead.

• The approach I took for the polymorphic box is similar to a less general version of that

in [20], which, with complex multi-level extensions, enables code pattern-matching too.

Generalising Lys’ type system as such is left for future work.

3.3.2 Lifting

Motivation

To generate next-stage code containing values at the current stage of type A (as in fig. 3.3), we

often need to lift them into boxes of type □A, which can then be unboxed and spliced in the

resulting code.

In the literature, lifting often has to be done manually. Logically, this is because in modal S4

logic, A → □A is not true for every A. In practice, the programmer has to convert values

to their intensional, syntactic representation, by traversing the data structure we want to lift.

Intuitively, we should expect that both the time complexity and the space complexity of the

generated code should be O(R) where R is the size of the semantic representation of that value

at runtime.

18 CHAPTER 3. IMPLEMENTATION

1 let rec lift_int_inefficient: int -> []int = fun (n: int) ->

2 if n < 0 then lift_int (-n)

3 else if n = 0 then box (|- 0)

4 else let box lifted = lift_int_inefficient (n-1) in

5 box (|- 1 + lifted with ())

6

7 let rec lift_int_efficient: int -> []int = fun (n: int) ->

8 if n < 0 then lift_int (-n)

9 else if n = 0 then box (|- 0)

10 else if n = 1 then box (|- 1)

11 else

12 if (n % 2 = 0) then

13 let box u = lift_int_efficient (n/2) in

14 box (|- 2 * (u with ()))

15 else

16 let box u = lift_int_efficient ((n-1)/2) in

17 box (|- 2 * (u with ()) + 1);;

18

Figure 3.4: Two implementations of lift int

This is not only tedious but also error-prone and inefficient. Consider lifting an integer. Naively,

we might write a lifting function which converts the integer into its Peano representation, which

takes both linear time and space, whereas the low-level bitstring representation is only of size

O(log(n)) where n is the integer to be lifted. With this insight, we alleviate this cost with an

implementation equivalent to considering the integer as a binary number, as shown in fig. 3.4.

We have achieved the required complexity, but this is obviously still extremely inefficient with

respect to the value’s underlying implementation! How, then, can we guarantee to match the

implementation’s complexity and constant factor? The answer is simple: we defer this lifting

to the implementation.

Design

We allow the lifting of any value which we could have lifted manually, i.e. any value which does

not contain a function (we discuss this choice below), and by extension, we disallow polymorphic

lifting. Given a primitive value like an integer or a character, we can convert it to a syntactic

value directly and avoid the overhead of interpreting the value structurally. Given structured

data like a list or a tree, no matter how it is represented at run-time, we can imagine that it

is simple to do this conversion automatically, given that we can convert any non-structured

value within it. Given a box, we can lift it trivially because the box already uses a syntactic

representation.

Therefore, I choose to include a lift construct for any ground (non-functional and non-

polymorphic) value as follows:

ground(τ) A; Σ;Θ;∆; Γ ⊢ e : τ
lift

A; Σ;Θ;∆; Γ ⊢ lift[τ] e : □τ

The syntax for specifying the type of the value we are lifting conforms to type application.

3.3. ZOOMING IN THE DESIGN 19

1 let pow: int -> [x: int |- int] = fun (n: int) ->

2 let c: [x: int |- int] ref = ref (box (x:int |- 1)) in

3 let cnt: int ref = ref 0 in

4 while (!cnt) < n do

5 let box u = (!c) in

6 c := box (x: int |- (u with (x)) * x);

7 cnt := !cnt + 1

8 done;

9 !c;;

10 pow 2;;

11 :- box (x: int |- 1 * x * x)

Figure 3.5: Imperatively staged pow

Discussion

What is the issue with lifting functions?

Firstly, it is clear that we cannot lift any arbitrary function to its intensional representation

within Lys, for there is no way to inspect the code inside the function [46]. Allowing this would

confer an automatic lift construct more power than just a convenient primitive.

We could implement function lifting as a language/compiler primitive. If the language was

purely generative, we could simply represent boxed code homogeneously with non-boxed code.

In other words, a compiled implementation would represent boxed code using its bytecode [49];

an interpreter would represent boxed code using an AST.

However, if we want to inspect the code using intensional features like code pattern-matching,

we must require that boxed code contain structured information like in an AST.

As code inspection is a desirable future extension, Principle 2 requires that we assume a com-

piled implementation with a heterogeneous code representation, to avoid making it harder to

make this extension later. However, unfortunately, allowing function lifting would render the

implementation significantly more complex (requiring decompilation), which is not justified by

its usefulness.

3.3.3 Imperative programming

Motivation

Adding imperative programming constructs, i.e. references, arrays and loops, is desirable in

that it enables both (imperative code) generation (see fig. 3.6, adapted from [3]) and imperative

(code generation) (fig. 3.5).

Design

As I discuss in the evaluation section, this has been a long-standing non-trivial issue for MetaML

and its descendants, but no formal presentation was given for λ□’s descendants. Surprisingly,

this extension proved to be nicely compatible with Lys’ contextual box, with one caveat: we

disallow lifting reference locations or arrays directly to avoid the hard-coding of global pointers

20 CHAPTER 3. IMPLEMENTATION

1 let rec pow: int -> [x: int , y: int ref |- unit] =

2 fun (n: int) ->

3 if n = 0 then box (x: int , y: int ref|- y:= 1)

4 else

5 let box u = pow (n-1) in

6 box (x: int , y: int ref |-

7 u with (x, y);

8 y := x * (!y)

9);;

10 pow 2;;

11 :- box (x: int , y: int ref |- y := 1; y:= x * !y; y:= x * !y)

Figure 3.6: Staged imperative pow

into code boxes, for this makes the code box contain an implicit ‘hole’ which is not specified

in the context. Instead, we lift them syntactically. For example, if location ℓ ∈ Σ contains

value 1, then lift[int ref] (ℓ) = box (|- ref 1) and not box (|- ℓ). Likewise, if array

label a ∈ A points to the array [|1, 2, 3|], then lift[int array] (a) = box (|- [|1,

2, 3|]).

Discussion

Two trade-offs were made:

• In exchange for having arrays (and without the power of dependent types), we sadly lose

type safety for array indexing. This is acceptable (principle 1) as this is the only case in

Lys’ type system, and can be well handled by a runtime exception.

• Lys implements imperative programming with an OCaml-like syntax, and for simplicity

(principle 3) and as this is not the focus of the project, defers memory management to

OCaml’s garbage collector.

3.4 Lys language implementation

According to the spiral model, each piece of design should be followed by implementation

and testing. In this section, I present a brief overview of my Lys implementation. With few

exceptions, I divide the implementation naturally into modules, each with one type M.t, and

implement the utility functions around it within the same module.

3.4.1 Repository overview

The Lys interpreter is written from scratch in OCaml and follows the classical directory struc-

ture of projects using the dune build tool. I present in table 3.1 the repository.

The interpreter pipeline is as shown in fig. 3.7. Thanks to the careful design, implementation

is mostly straightforward.

I decided to make the interpreters substitution-based, for the original aim was to make the

interpreter formally verifiable. As the type theory and the extensions are very complex and

3.4. LYS LANGUAGE IMPLEMENTATION 21

Directory Description LoC

bin/main.ml The main interpreter program 34

bin/repl.ml The REPL 97

bin/benchmark(2).ml Benchmark driver code 181

bin/(rest)* Debugging programs 116

lib/parsing/* Lexer and Parser 455

lib/ast/* Definition of the parse tree, the abstract

syntax tree, and utility functions

2704

lib/substitutions/* Implementation of various substitutions 963

lib/typing/* Type checker 1434

lib/interpreter/* Implementations of Lys’ evaluators 2163

lib/utils/* Utility functions 94

lib/benchmarks/* Custom benchmark specification library 507

test/example programs/* Example Lys programs 1580

test/(rest)* Unit and regression tests 2794

notebooks/* Jupyter Notebooks for processing bench-

marking data

(ignored)

Table 3.1: Repository overview

absolute performance does not matter, I favoured the simplest implementation by principle

3. This is a trade-off consciously made, and faster implementations with lazy substitution or

grafting as discussed in [39] or compilation [49] are left for future work.

To simplify the implementation for substitution, we use De Bruijn indices to represent binders.

We replace each string variable occurrence with a number counting the binders between that oc-

currence and its corresponding binder. This way, the syntax tree we get is completely invariant

to α-conversion.

Therefore, the remainder of the complexity lies mainly in fiddling with De Bruijn indices, which

I detail in later sections.

Figure 3.7: Interpreter pipeline

3.4.2 Lexer and Parser

Instead of writing a lexer and a parser by myself, I use ocamllex and menhir respectively to

generate them. Both are standard OCaml tools and rely on concise specification files which

22 CHAPTER 3. IMPLEMENTATION

make fast iteration on Lys’ syntax possible:

• For every feature, I specify the new tokens in regular expression format for ocamllex.

• Then, I write the new production rules in terms of the new tokens in the menhir con-

figuration file, which represents the language to be parsed as a context-free grammar. I

specify the precedence of the relevant rules and associate each operator with appropriate

associativity. Conveniently, menhir is an LR(1) parser generator, so I need not worry

about issues such as left-recursive production rules.

3.4.3 Preprocessing

Given a parse tree of type Past.Program.t, we first perform a pass to distinguish between

object-level identifiers (lambda-bound binders), meta-level identifiers (bound to an unboxed

expression), and type identifiers (data type names), not distinguished by the parser. We also

distinguish between object identifiers defined at the top level and those within expressions (cf.

the structure of a program presented in section 3.2), which are treated differently: top-level

identifiers are recorded in a context to be passed onto different places, whereas others use a

substitution-based implementation.

Then, we populate the De Bruijn indices on object-level identifiers, meta-identifiers and type

variables (polymorphic parameters, not to confuse with type identifiers). Therefore, this stage

converts such a parse tree to a program of type Ast.Program.t by performing the above trans-

formations and clean-ups. This is done before type-checking because type-checking parametric

polymorphism and existential types requires type-substitution, which in turn needs De Bruijn

indices.

3.4.4 Type-checker

Given an Ast.Program.t, the type-checking procedure simply recursively traverses the tree

with the contexts specified in the typing sequent above (section 3.3) and implements the typing

rules in CMTT, combined with those in System F, extended with the various features mentioned

above. An example rule is in section 3.3.1. The complexity lies in the correct handling of De

Bruijn indices on type variables, which need shifting in appropriate places.

3.4.5 Interpreters

Once type-checked, we feed the Ast.TypedProgram.t into our interpreters.

Lys provides two expression evaluators: one big-step, with performance close to the theoretical

complexities, and timing facilities – on which we perform our evaluations; and one small-step

reducer with a step-counter and a reduction step dumper exactly implementing the small-

step operational semantics – used for testing and debugging purposes. Given a program, both

interpreters should give exactly the same outputs, and this is empirically verified by the tests

included under test/test interpreter. As discussed above, type annotations are ignored

except for type applications. Code between the two implementations is shared extensively

using OCaml modules.

3.5. SUMMARY 23

1 ... and Pattern : sig

2 type t = ... [@@deriving sexp , show , equal , compare] (* ppx extensions

generating utility functions *)

3 val of_past : Past.Pattern.t -> t (* mutually recursive conversion

function from Past.t *)

4 ...

5 val pretty_print : t -> string (* mutually recursive pretty pretting *)

6 end

7 and Expr : sig

8 type t = ... [@@deriving sexp , show , compare , equal]

9 val of_past : Past.Expr.t -> t

10 ...

11 val pretty_print : ?alinea_size:int -> t -> string

12 end ...

13

Figure 3.8: Excerpt of mutually recursive module signatures in Ast

Given a program, the interpreter processes the definitions sequentially and evaluates the expres-

sions with respect to the top-level contexts (object-level binders and type definitions) therein,

using either of the expression evaluators. This structure enables the same implementation to

be used for both evaluating Lys files and providing a REPL.

3.4.6 Software engineering techniques and practices

During the project, I exploited the powerful features of OCaml to enable maximal code reuse

and extensibility. This includes

• Extensive use of unit tests and regression tests with the OUnit2 library [40]

• The Or error monad which enables uniform handling, easy propagation and composition

of errors via tagging [7]. This not only facilitates interpreter debugging but also produces

readable type errors for the Lys user.

• Module-oriented design of the code base: the Ast module is composed of mutually re-

cursive modules Expr, Typ, etc. with each module have a unique M.t, enabling a natu-

ral interface-driven way to write mutually recursive utility functions (like populating De

Bruijn indices or pretty-printing) on different AST components (fig. 3.8), and type-driven

utility generation with ppx extensions.

3.5 Summary

In this chapter, I presented the design and implementation of Lys, an OCaml-like polymorphic

functional multi-stage language based on CMTT. In particular, I first laid out four core design

principles. Then, I presented Lys’ key features and highlighted the complexity of three of them.

This careful design at each stage of the spiral left a relatively straightforward implementation

based on De Bruijn indices, which I then briefly presented. Finally, I mentioned some of the

engineering techniques I employed to manage my substantial code base.

Chapter 4

Evaluation

We now demonstrate that Lys meets the success criteria set in section 2.5. Our implementation

fulfils both the core (interpreter for a Turing-complete extension of CMTT) and the extensions

(implementing OCaml-like features). We now evaluate it along the three axes specified in the

proposal: correctness (section 4.1 have I correctly implemented Lys, meeting the success

criteria?), performance (section 4.2 what performance gain can I expect to get by staging

programs using Lys?) and expressiveness (section 4.3 how well can the programmer use Lys

to stage a program, compared to using other paradigms?).

4.1 Correctness

The correctness of the implementation is a prerequisite to any evaluation. I provide empirical

evidence for the correctness of Lys’ implementation under the test directory of the repository,

along two axes. First, I show that my type system, stemming from contextual modal logic,

does inherit the correctness properties with the Curry Howard correspondence. Then, I show

that both the core Lys interpreter and the extensions exhibit the expected behaviour.

4.1.1 The Lys type system

The standard way of empirically checking the correctness of the implementation of a type theory

obtained with the Curry-Howard correspondence is to demonstrate the possibility of using this

implementation as a theorem prover for the logic in question. In other words, for every valid

proposition in that logic, we can provide programs which type-check in this implementation

with the corresponding type. Thus, we evidence Lys’ correctness by giving proofs of valid

propositions in ICS4 in the style of Nanevski [39]. Note that the claims only hold in the

CMTT fragment of the language, as multiple extensions make the system logically inconsistent

(recursion, references, System F polymorphism, recursive types).

For example, contextual weakening is stated as the following Lys type (ignore the binder names

x and y as they are logically meaningless and only present for type-theoretical reasons).

[x : C]A→ [x : C, y : D]A

We can provide a proof in Lys as follows, for any proposition A, C and D:

24

4.2. PERFORMANCE 25

1 'a. 'c.'d. fun (z: [x:'c]'a) ->

2 let box u = z in box (x: 'c, y: 'd |- u with (x));;

Which type-checks in Lys with the following polymorphic type (i.e. any type A,C,D would

make the program type-check):

1 forall 'a. forall 'c. forall 'd. (([x:'c]'a) -> ([x: 'c, y: 'd]'a))

as required.

We provide similar proofs in Lys for ICS4 identities and demonstrate successful type-checking

under test/example programs/cmtt paper proofs in appendix B.1.1.

4.1.2 The Lys interpreter

I wrote 196 unit tests covering a wide range of edge cases and applied them to both the single-

and multi-step implementations. This gives assurance in both the correctness and equivalence

of their implementations. Moreover, we use our type system to enhance every unit test on

the evaluators by instrumenting the single-step evaluator and checking for type preservation at

every step.

I also include more meaningful example programs listed in table 4.1 – over 1500 lines of

Lys code under /test/example programs, depending on various core or extension features

– all type-checking and operationally demonstrating the required staging behaviour on both

evaluators, i.e., generated well-typed code at run-time.

For example, with the single-step evaluator, we obtain the execution trace of the staged power

function (section 2.3.3) applied to integer 2, and compare it to the expected result from the

operational semantics. As shown in appendix B.1.2, we get exactly the expected 16-step

trace reducing to the expected result, box (x: int |- x * (x * 1)).

These programs demonstrate Lys’ practical applications. This includes important examples

like embedding domain-specific languages (DSL) into Lys by staging their interpreters (section

4.2.2), implementing optimised efficient data structure libraries (stream fusion, section 4.3.3),

as well as other smaller applications (regular expression matching, convolution as an application

to signal processing in section 4.3.2 etc.).

4.2 Performance

We now turn to the potential performance gains we can expect by staging programs

in Lys. We attempt to provide a snapshot of possible improvements by quantitatively analysing

example staged programs, within the framework for partial evaluation (PE) proposed by [21],

as programs which have been manually partially evaluated by our particular MSP system im-

plementation.

After a brief summary of our experimental setup, we dive into the details of the performance

analysis of an example, the staged WHILE language interpreter, while introducing the formal

framework. Then, we present the experiments and discuss the results. Finally, we critique our

method and motivate evaluation for expressiveness.

26 CHAPTER 4. EVALUATION

Program Description Dependencies LoC

hello world.lys Staged power function Core 12

imperative pow.lys Staged power function

(imperative)

Core, Imperative 26

poly map.lys Polymorphic list and

staged utility functions

Core, Polymorphism 29

regexp.lys Staged regular expression

matcher (from [38])

Core, Strings 160

stream fusion.lys Staged stream fusion [25] Core, Polymorphism,

Existentials, Imperative

programming

294

lambda tagless.lys Staged tagless-final

STLC

Core, Polymorphism 50

while better.lys Staged while language as

a compiler (inspired from

[44])

Core, Strings 288

flowchart better.lys Staged flowchart lan-

guage as a compiler

Core, Strings 246

Table 4.1: Incomplete list of staged Lys programs

(Core corresponds to the Core deliverable (incl ADTs) defined in section 2.5)

4.2.1 Experimental setup

We choose to use the execution time as our metric for measuring speed-ups. Due to the

non-determinism incurred especially by the garbage collector (GC), we cannot guarantee the

execution times collected to exhibit a normal distribution (appendix B.2.1). For this reason,

the benchmarks are executed using the Core bench library [18] on top of which I write a

thin wrapper. Designed to minimise the effects due to the GC, Core bench runs benchmarks

in sample batches of different sizes, stabilises the GC after each run, and performs linear

regression to obtain an estimate of the run time. Furthermore, we enable bootstrapping to

estimate confidence intervals for each benchmark.

The details of the platform are as follows:

• CPU: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz

• Memory: 16.0 GB

• OS: Ubuntu 18.04 on WSL for Windows 10 19045.2846

• OCaml version: 4.14.0

4.2.2 A first example: staging the WHILE language

In this subsection, we walk through the process of staging and analysing the performance for

the staged WHILE language interpreter. The aim is to demonstrate what Lys can do in

terms of true performance improvement.

4.2. PERFORMANCE 27

1 datatype expr = Int of int | Var of string | Add of (expr * expr)

2 | Leq of (expr * expr) | Mul of (expr * expr);;

3

4 datatype com = Assign of (string * expr) | Seq of (com * com)

5 | Cond of (expr * com * com) | While of (expr * com) | DoNothing ;;

6

Figure 4.1: AST definition of the WHILE language

The WHILE language

Imagine that we need to embed a domain-specific language, WHILE, into our language Lys.

The specification of the abstract syntax tree is shown in fig. 4.1.

We can then specify a program as the type string list * string list * com, corresponding

to the inputs, outputs and program body respectively. A trivial example is the imperative fib

program, shown in

After all this setup, it is very straightforward to write an interpreter for this lan-

guage, with signature interpret: (string list * string list * com) -> int list ->

int list (the first argument is the program the second contains the list of input values).

However, this interpreter is rather slow. How can we make it faster?

Scenario 1: fixed static input, variable dynamic input

Assume that the input program changes much less often than its inputs. Then, to make it

faster we naturally think of staging the interpreter. By dividing the execution into stages, we

provably cannot achieve a super-linear speed-up (analogously to PE [21]). However, we can

eliminate the constant factor corresponding to the interpretation overhead by moving it to an

earlier stage, so that the generated later-stage code only contains the necessary computation.

This makes the staged interpreter, with signature interpret staged: (string list *

string list * com) -> [args: int list] int list, a two-stage program which first

compiles WHILE ASTs to a boxed Lys expression and then runs it. It achieves non-negligible

albeit linear speed-ups, the extent of which we study. Compilation comes at a cost, but we can

assume that the program is executed a sufficient number of times so that this cost is amortised

away.

To give a taste of what ‘compiling’ means, I show in fig. 4.2 how the compiled version of

the small program INPUT i; OUTPUT i; j := 1; i := j + 1 would look like. I include the

compiled version of the fib program in appendix B.2.3.

Formally, in the style of Jones [21], let p be the WHILE interpreter with static input s (the

program) and dynamic input d (the arguments). We write tp(s, d) as the time used to compute

p s d in Lys. When staged with respect to the program, we get ps, the compiled program, the

execution time of which on input d is denoted by tps(d).

28 CHAPTER 4. EVALUATION

1 box (args: (int list)|-

2 ...

3 let zipped_env: env = ((zip Cons[string] ("i", Nil[string])) args) in

4 let new_env: (env) =

5 let new_store: (env) = ((update zipped_env) ("j", 1)) in

6 ((update new_store)

7 ("i", (((lookup new_store) "j") + ((lookup new_store) "i"))))

8 in Cons[int] (((lookup new_env) "i"), Nil[int])

9)

10

Figure 4.2: A WHILE program compiled to Lys

(a) Execution time of the compiled program tps(d)

and the interpreted program tp(s, d) as a function

of the input d. Shared areas and dark bars denote

the confidence interval.

(b) Estimate of the speed-up ratio as a function of

the input d2

Figure 4.3: Scenario 1 experiments on staging

the WHILE interpreter with the Fibonacci pro-

gram as the static input.

Then the speedup function sus(d) of the non-

staged interpreter with respect to the staged

interpreter is defined by

sus(d) =
tp(s, d)

tps(d)

and we define the speedup bound of program

p specialised with static input s as the limit

of this value when d goes to infinity (where

the limit of a set A = {a0, a1, a2...} is defined
somewhat unconventionally as the minimum

value ℓ such that ℓ > ai for all but finitely

many i’s.):

sb(s) = lim
|d|→∞

sus(d)

which is guaranteed to be finite because we

can only achieve linear speed-ups.

Within this framework, we now study the

speed-up sus(d) with respect to d with a fixed

s (the fib function) to estimate the speed-up

bound sb(s) and present the results on fig. 4.3

(a) and (b).

Figure 4.3a compares the execution time of

the compiled fib program and its interpreted

counterpart. We can clearly observe the O(n)

complexity inherent to the Fibonacci pro-

gram, as well as a linear speed-up of the com-

piled program. By dividing the two values, we

obtain a curve estimating the speed-up ratio

sus(d) (fig. 4.3b), which indicates a speed-up bound of around 1.8, i.e., the staged version is

slightly less than twice as fast as the non-staged version.

4.2. PERFORMANCE 29

Scenario 2: variable static input and dynamic input

But what if the assumption that d changes much more often than s is wrong? Might staging

still be advantageous in a single run?

Figure 4.4: Scenario 2 experiment on staging

the WHILE interpreter: time taken to run the

1-stage program VS the 2-stage program in

one go

Formally, we want to find the smallest d satis-

fying the following inequality:

tcompile(p, s) + tps(d) ≤ tp(s, d)

where tcompile(p, s) is the time to specialise p

with respect to s.

In fig. 4.4, I use linear regression1 to approxi-

mate the linear execution time curves and find a

graphical solution: the smallest (integer) dthres
satisfying the equation is 4. In other words,

similarly to just-in-time (JIT) compilation, run-

ning the two-stage process in one go is still ad-

vantageous provided that the input size d is big

enough.

Summary

In summary, we have shown how staging the WHILE interpreter produces a compiler from

WHILE to Lys, which can be advantageous in two scenarios: when the program is fixed and

the input changes, it can bring a non-negligible speed-up, and when the program varies as well

as the input, it can still be advantageous, provided the input is big enough for that particular

program.

4.2.3 Further Experiments and Results

To demonstrate the power of Lys as an MSP language, I analyse other two-stage Lys programs,

taken from the corpus of programs shown in table 4.1, and discuss the results.

p s Sample d Runs

Pow 10 8192 10000

Conv 200-element int list 200-element int list 1000

Regexp 0(a*b)* Accepted 100-character string 1000

While Fibonacci 100 200

Flowchart Fibonacci 100 100

Table 4.2: Table of benchmarks

1using MSE loss, which makes the assumption of Gaussian noise. This assumption is that Core bench

reduces the effects of GC enough to turn the remaining noise into Gaussian.
2Uncertainty propagated using standard methods, assuming both estimates are drawn from independent

Gaussian distributions. See appendix B.2.2
3This evaluation does not apply, because this implementation of convolution requires both of its inputs to

be of the same length, making it impossible to vary d without varying s.
4 Obtained with linear regression because the input program (fib) is O(d)

30 CHAPTER 4. EVALUATION

p Sample

tp(s, d) (ns)

Sample

tps(d) (ns)

sb(s)

estimate2
Sample

tcompile + tps (ns)

dthres es-

timate

Pow 1.8e6±1.1e5 2.7e4±1.2e3 67± 5.0 2.4e6± 1.5e5 ∞
Conv 5.9e8±2.7e7 2.6e8±1.7e7 2.3± 0.18 5.4e8± 2.7e7 N/A3

Regexp 5.5e8±2.4e7 5.4e6±4.8e5 1e2± 1e1 5.9e6± 5.3e5 0

While 6.4e8±3.4e7 3.5e8±3.6e7 1.8± 0.21 3.6e8± 3.7e7 44

Flowchart 2.3e9±2.8e8 9.9e8±6.3e7 2.3± 0.32 1.0e8± 6.6e7 64

Table 4.3: Experiment results (with 95% confidence).

Overview

Table 4.2 presents the programs on which I performed the analyses. For each program p, I

present the s value I chose to specialise the program on, a sample d value, as a snapshot of the

actual data obtained, and the number of runs performed.

Table 4.3 presents the results obtained from experiments relevant to scenarios 1 (estimating the

speed-up bound) and 2 (exploring the benefits of running both stages in one go by estimating the

dthres: the smallest value of d big enough to amortise away the execution cost of compilation).

Results and Discussion

By exploring scenario 1, we notice that as expected, all five benchmarks exhibit a linear speed-

up, quite substantial in some cases.

Scenario 2 results show that staging is often desirable even if both inputs tend to change. For

the majority of cases, staging is worthwhile because the d threshold is either small enough (for

the two interpreters) or 0 (regexp). We explain this by the property of Lambda calculi that

the number of evaluation steps depends on the evaluation order. Indeed, for the regexp case,

according to our single-step evaluator, the non-staged version takes 2304 steps whereas the

staged version takes only 1188 steps combined, for exactly the same inputs. In some cases, like

the power function, staging does not confer an advantage regardless of the size of d (dthres =∞).

Indeed, this happens because the cost of pow does not grow when d grows.

4.2.4 Caveats

So far, we have presented a snapshot of Lys magic and shown that staging programs in Lys

enables substantial linear speed-ups while maintaining type safety. This, however, is an

optimistic view: we ignored three very important limitations which make Lys less powerful

than it seems.

Not all programs are equal

Firstly, partial-evaluation-capable systems like Lys cannot exhibit speed-ups on any program.

Even amongst programs p with two inputs s and d, the speed-up we can achieve by specialising

p with respect to s depends on how s influences the run-time of the program. In fact, some

programs simply cannot give any speed-up.

4.2. PERFORMANCE 31

1 datatype expr = Int of int | Var of string

2 | Add of (expr * expr) | Leq of (expr * expr);;

3 datatype command = Goto of int | Assign of (string * expr)

4 | If of (expr * int * int) | Return of expr;;

5

Figure 4.5: Flowchart AST in Lys

For example, consider the O(s + d) program that takes int arguments s and d and returns

ds+d. Then, sb(s) = limd→∞
ks+k′d

constant+k′d
= 1 so we cannot expect to achieve any speed-up.

In fact, generalising the proof in [21], if p’s run-times are additive, i.e. tp ∈ O(f(|s|)g(|d|) +
h(|d|)) such that g ∈ o(h), then we cannot achieve any speed-up because the factor in |s|
becomes a constant.

Not all programmers are equal

Secondly, Lys is a programming language. How much gain we get from it strongly correlates

with the skills of the programmer.

Firstly, staging certain programs can be challenging to get right or require non-trivial manual

program transformations.

For example, staging the interpreter for the Flowchart language was non-trivial. Flowchart [16]

is a simple imperative language, differing from other such languages in that it has unstructured

control flow (fig. 4.5). Staging its interpreter is thus challenging because unstructured jumps

create arbitrary cycles in the program’s flow graph. Naive staging traversing it depth-first gets

into an infinite loop. One solution is to compile by basic block (a linear code sequence without

jumps except at the entry and exit points) and create a top-level loop at run-time that handles

the jumps. This, I argue is challenging to do automatically.

Moreover, usually, naive staging does not give optimal performance. In these cases, the extent

to which the staged program is optimised depends on the programmer.

One example would be staging a stream processing library to achieve stream fusion. Stream

fusion [8] is an automatic deforestation method for streams, i.e., optimises away the intermediate

data structures generated when composing stream functions like map and fold, often involving

compositional generation of code to alleviate the overhead. In Lys, I replicate fragments of

the staged stream fusion library following the insights of Kiselyov et al. [25], which include

using the pull-based representation of streams (with a hidden state and a step function), using

continuation-passing style (CPS) to exploit knowledge about the static structure of the stream

(with a Nil continuation and a Cons continuation), as well as Lys-specific tricks (threading

through free variables of unknown types using polymorphism). The resulting implementation

is highly complex (fig. 4.6c) but generates highly efficient code (fig. 4.7).

I argue (alongside Kiselyov et al. [25]) that it is precisely this sort of optimisation that is hard

to do automatically, and that distinguishes MSP systems like Lys from conventional partial

evaluators. Unfortunately, this also makes the previous section not only an evaluation of Lys,

but also of the Author’s talent as a programmer.

32 CHAPTER 4. EVALUATION

1 datatype ('a, 's) stream_shape = Nil | Cons of ('a * 's);;
2 datatype 'a stream =

3 St of (exists 's. ('s * ('s -> ('a, 's) stream_shape)));;

4

(a) Unstaged pull stream

1 datatype 'a st_stream = St_staged of

2 (exists 's. ([]'s * ([s: 's |- ('a, 's) stream_shape])));;

3

(b) Naively staged pull stream

1 datatype 'a st_stream_2 = St_staged_2 of (

2 exists 's.
3 ([]'s *

4 ['fold_loop_type , 'fold_z_type , 'o;
5 cons_cont: [fold_loop: 'fold_loop_type ,
6 fold_z: 'fold_z_type , a: 'a, t:'s |- 'o]
7 |-

8 [fold_loop: 'fold_loop_type , fold_z: 'fold_z_type ,
9 state:'s, nil_cont: 'o |- 'o]]));;

10

(c) More efficient staged pull stream

Figure 4.6: Datatype definitions for staged stream fusion in Lys

1 fold_staged [int][int] (box (acc: int , x: int |- acc + x)) (box (|- 0)) (

2 (map_staged[int][int] (box (x_a: int |- x_a * x_a)) (

3 of_arr_staged [int] (box (|- [|1, 2, 3, 4, 5|])))));;

4

5 ===== >*

6

7 box (|-

8 let rec loop: (int -> ((int * (int array)) -> int)) =

9 (fun (z: int) -> (fun (s: (int * (int array))) ->

10 match s with

11 (i, arr)->

12 if ((i < (len(arr)))) then

13 let el: int = (arr.(i))

14 in let a2: int = (el * el)

15 in ((loop (z + a2)) ((i + 1), arr))

16 else z))

17 in

18 ((loop 0) (0, [|1, 2, 3, 4, 5|]))

19)

Figure 4.7: Example stream pipeline and code generated by the efficient implementation of

stream fusion, accomplishing exactly the same staging as Kiselyov et al. in section 5.1 of [25]

4.3. EXPRESSIVENESS 33

Not all paradigms are equal

Has our evaluation thence lost its meaning? Happily, this is not the case: the programmer is

constrained by the expressiveness of the language, which is the focus of the next section.

4.3 Expressiveness

MSP paradigms are both powered and bottlenecked by their expressiveness. This is why im-

proving the expressiveness of various staged calculi has been the main research direction since

the seminal papers by Davies [9] and Davies and Pfenning [10].

In this section, we explore the expressiveness that Lys arms the programmer with compared to

other relevant paradigms by implementing programs therefrom taken.

4.3.1 Overview

Properties of the code con-

struct or quasiquote

Lys (CMTT) ν□ MetaOCaml

Well-typed Yes* Yes Yes*

Well-scoped Yes Yes Yes (except for

imperative

effects [3])

Hygiene Yes Yes Yes

Explicit free variables Yes Yes No

Symbolic evaluation No No Yes

Cross-stage portability Yes Yes No

Cross-stage persistence Yes (boxes only) Yes (boxes only) Yes (with

difficulty [46])

Type-safe code execution Yes Yes NI([45])

Impure/stateful code gener-

ation

Yes No** Yes

Polymorphic code genera-

tion

Yes No Yes

Context polymorphism NI([35, 36]) Yes Yes

Intensional analysis NI([20]) Yes (limited) No

Table 4.4: Taxonomy of the code construct between Lys and two related paradigms.

Here, Yes means it is possible and implemented; No means it is not supported, and NI means it is possible but

not implemented. *: Well-typed modulo the unsafe language constructs like arrays. **: The author believes it

should be possible with a similar extension to CMTT.

At the core of Lys’ code generation is the box primitive representing a piece of code, which

shapes how Lys achieves staging. As we see in section 4.3.3, this reveals to be limiting.

In table 4.4, we compare Lys’ code construct with two other paradigms: ν□, a direct ancestor

of CMTT from [37], and MetaOCaml [47], a well-known MSP language. The listed properties

are those deemed to be useful in the literature [46, 41], some of which I define below:

34 CHAPTER 4. EVALUATION

• Hygiene [26]: no capturing of binders.

• Symbolic evaluation: manipulating code with free variables bound on the next stage.

• Cross-stage portability [46]: safely running different stages on different machines.

• Cross-stage persistence (CSP) [46]: using a value defined at an earlier stage in later stages.

• Context polymorphism: polymorphism over the free-variable context.

• Intensional analysis : inspection of pieces of code via pattern-matching.

These properties might not be compatible with each other and involve trade-offs. In the next

sections, we qualitatively compare Lys’s expressiveness with the two paradigms by experiment-

ing with implementing various non-trivial programs from these paradigms in Lys.

4.3.2 Lys and ν□

In this section, we demonstrate empirically that Lys can implement any staged generative (i.e.

without intensional analysis) program one can implement in ν□.

ν□, briefly.

The modal calculus ν□ by Nanevski is very close to CMTT, hence to Lys. Informally, the

only big difference is the representation of free variables. Instead of using local binders in a

context, ν□ uses global names X, Y ∈ N (coupled with a name generation procedure to avoid

duplication), represented by the νX : T : e binding. A piece of code with free variables is

then represented as box (e) : □CT , where e is of type T depending on a free name in the

support set C. Finally, explicit substitutions are represented by an explicit mapping of names

to expressions ⟨X → e, Y → ...⟩e.

This calculus can be extended with support polymorphism, defined as polymorphism over the

support set, i.e. with respect to the free variables in a piece of code.

A limited form of intensional analysis with code pattern-matching is also possible, but we do

not discuss it further.

Is Lys more expressive than ν□?

Non-support-polymorphic, generative (i.e. no code pattern-matching) ν□ programs are easily

expressible in Lys. Informally, boxes in ν□ can be simply translated by contextual boxes

depending on free variables of exactly the same types: e.g. □{X}B where X is declared of type

A translates to [x : A]B, and the rest follows straightforwardly. To demonstrate this, we show

a line-by-line translation of pow in fig. 4.8.

I hypothesise that support-polymorphic ν□ programs can also be (inelegantly) expressed be-

cause they can be compiled into non-support-polymorphic programs by including all the

names that might appear in the support set and closing them with dummy values. This

is how we translate the regular expression program [38, p. 88] (appendix B.3.1): with

the name S of type string, the auxiliary function (in CPS form) of type regexp →

4.3. EXPRESSIVENESS 35

1 let pow: int -> □(int -> int) =

2 fun (n:int) ->

3 let name X:int

4 let pow ': int -> □Xint =

5 if m = 0 then

6 box 1

7 else

8 let box u = pow ' (m-1) in

9 box (X * u)

10 in

11 let box v = pow ' n in

12 box (fun (x:int) -> <X -> x> v)

1 let pow: int -> [](int -> int) =

2 fun (n: int) ->

3 (* Define name X as free -var x *)

4 let pow ': int -> [x: int]int =

5 if m = 0 then

6 box (x: int |- 1)

7 else

8 let box u = pow ' (m-1) in

9 box (x: int |- x * u with (x))

10 in

11 let box v = pow ' n in

12 box (fun (x: int) -> v with (x));;

Figure 4.8: Translating pow from ν□ (on the left) [38, p. 81] to Lys (on the right)

∀p.(□S,pbool) → (□S,pbool) is translated to regexp → [s : string, free variables]bool →
[s : string, free variables]bool in Lys, where free variables correspond to all free names

that can occur in the code box within this function. Nevertheless, there exists a more elegant

embedding with context polymorphism, based on recent work by Murase et al. [36], which also

resolves some of Lys’ key limitations.

Finally, Lys does not support code pattern-matching, although an extension in the style of Jang

et al. [20] should enable this feature.

4.3.3 Lys and MetaOCaml

Finally, we compare Lys with MetaOCaml, a diametrically opposed paradigm based on linear

temporal type theories [9], which exposes the strengths and the limits of Lys. I do not

attempt to give a comprehensive comparison, for the relationship between modal type theories

and linear temporal type theories is an active research topic. However, I stress that recent

works [35, 36] enabling polymorphic contexts can be partially motivated by the limitations I

expose.

MetaOCaml, briefly.

MetaOCaml, based on λ⃝, hence linear temporal logic (LTL), achieves type-safe staging by di-

viding the program into different time steps, or stages. Stages are indicated using quotes .<e>.

and splices .∼(e). Quoting code delays its execution to the next stage; splicing advances it

to the previous stage. The current stage is the difference between the number of surrounding

quotes and splices. The execution order is then exactly the stage order: execution only happens

at stage 0. Importantly, each stage has its own independent context, and each stage-n

variable can only be bound to a stage-n binder5. Figure 4.9 shows the staged power func-

tion, where constructs are highlighted by stage and variables coloured by their corresponding

bindings.

With the implicit stage-specific context, MetaOCaml binds its free variables directly when the

5Or a stage-m binder with m ≤ n thanks cross-stage persistence, which we do not yet discuss to avoid

confusion.

Theo Wang

36 CHAPTER 4. EVALUATION

1 (*pow: int -> (int -> int) code*)

2 let pow n =

3 (*aux: int -> int code -> int code*)

4 let rec aux n x =

5 if n = 0 then .< 1 >.

6 else .<.~(x) * .~(aux (n-1) x) >.;;

7 in

8 .< fun x ->

9 .~(aux n .< x >.) >.;;

10

Figure 4.9: Staged power function in MetaOCaml

Yellow = stage 0; Green = stage 1; variables and corresponding bindings in the same colour

next-stage code is created. For example, stage-1 free variable x on line 9 is bound to the stage-1

binder on line 8. This is in contrast to Lys boxes, where free variables are explicitly carried in

their types and are only instantiated when used.

This is the property that enables symbolic evaluation. It is expressed as functions of type

A code -> B code, which constructs a B code within which the input A code is spliced into

various places. Because the input has all its free variables statically bound when it was con-

structed, all free variables the output B code inherits will also be bound in that same context.

In other words, the output implicitly depends on the context of the input. For exam-

ple, given n, aux n .<x>. (line 9) reduces to an int code containing the variable x, which is

bound to the same stage-1 binder on line 8 as the input.

Lys’ Strengths

It is well known that MetaOCaml used complex and unsafe extensions to implement features

inherent to Lys because of the implicit contexts for each stage. Lys supports safe code execu-

tion, imperative code generation and cross-stage persistence (CSP) out of the box. In contrast,

MetaOCaml struggles to implement the first two: run is unsafe due to the difficulty of deter-

mining whether quoted code is closed, and stateful computation creates scope extrusion, as code

containing free variables can escape from its scope with references. These issues were solved

with complex type systems [3, 45, 24] but are not implemented due to their lack of usability

[22]. Lastly, CSP is implemented but requires a complex procedure where persisted values are

serialised and pointed to by a special label [22] and disables cross-stage portability because of

the cross-stage dependencies.

Instead, we focus on pushing Lys to its limits by experimenting with expressing non-trivial

staged MetaOCaml programs.

Pushing Lys to its limits

Lys, because of its explicit contexts, struggles to express symbolic evaluation, ubiquitous in

MetaOCaml.

We first attempt to translate A code -> B code functions into Lys by turning every code into

a contextual box. We must explicitly specify the same context for both the input and output

4.3. EXPRESSIVENESS 37

1 (* ('a code -> 'b code) -> ('a -> 'b) code *)

2 let back f = .<fun x -> .~(f .<x>.) >.

3

4 (* ('a -> 'b) code -> ('a code -> 'b code) *)

5 let forth f x = .<.~f .~x>.

Figure 4.10: Witnesses of the type isomorphism between A code -> B code and (A -> B)

code [44]

1 let f_inefficient (x: (τ1 × τ2) code) =

2 (* tuple deconstructed at stage 1*)

3<match .~x with (v1 , v2) -> ... v1 ... v2 ...>.

4

5 let f_efficient (x: τ1 code × τ2 code) =

6 (* tuple deconstructed at stage 0*)

7 match x with (c1, c2) -><~c1~c2 ...>.

Figure 4.11: Moving the deconstruction of data structures fro stage 1 to stage 0 in MetaOCaml

boxes, lending to the following type: [Ψ]A -> [Ψ]B. Moreover, this function must work for

any arbitrary context Ψ. This, however, cannot be expressed in Lys.

To find an alternative translation, we turn to type theory. MetaOCaml inherits, from LTL,

the isomorphism (A -> B) code ∼= A code -> B code6, where code corresponds to the ⃝
modality, meaning ‘true at the next stage’. The witnesses are shown in fig. 4.10. Lys, based

on modal S4 logic, can only express the left-to-right implication (K axiom), corresponding to

type [x: A |- B] -> ([Ψ]A -> [Ψ]B). Conveniently, this implication holds for any Ψ on

the right-hand side, as required. This makes the left-hand side, [x: A |- B], an adequate

translation. Indeed, this makes intuitive sense: regardless of what context the A code and B

code both depend on, all we are doing is having a context-agnostic template guiding where we

should splice the A value in the resulting B code.

This worked quite well: we staged the WHILE language in [44] without any problem.

However, in MetaOCaml, the full power of symbolic evaluation comes when A contains statically

known structures, allowing us to replace the fully dynamic argument A code with some type

A’, with all the static structures pulled out. For example, assume that A is statically known

to be a tuple, e.g. A = τ1 × τ2, with dynamic components. We can then pull this structure to

stage 0 which gives A’= τ1 code × τ2 code, and use this more efficient representation as our

new argument type. This way, we can deconstruct the tuple at stage 0 instead of generating

code doing that at the next stage (fig. 4.11).

This is a key feature of MetaOCaml, as it enables substantial savings combined with

continuation-passing style (CPS): instead of having fully dynamic composite values of type A

code (which has to be constructed and deconstructed dynamically), we can use CPS to make

it always appear as an argument to a (continuation) function, and with the above trick, we

6In modal logic, the left-to-right implication is the K axiom, and the converse the K−1 axiom, proper to

the linear time assumption.

38 CHAPTER 4. EVALUATION

replace A code with a more efficient structure A’ with the static structures pulled out. We thus

obtain ∀ω.(A’→ ω code)→ ω code, which enables the data structure to be deconstructed at

stage 0.

Unfortunately, expressing this in Lys is rather awkward. Naively translating A’ -> B code

using the previous insight gives the type [x : A ⊢ B]. Notice that we use the non-annotated A

as the type of the free variable. This is clearly inefficient because we will have to unwrap the

data structure in our generated code at stage 1.

Alternatively, we can flatten the A’ data structure, extract all the dynamic components, and

explicitly specify the corresponding types in the result’s context – this is analogous to specifying

a template which indicates, for each of A’’s dynamic component, which holes it should be spliced

into. If we take our previous example, the result would look like [x1 : τ1, x2 : τ2 ⊢ B].

This works as expected, but now, our type makes a strong assumption on the structure of the

argument type A’. In most cases, this is acceptable, but when it comes to trying to quantify

over the efficient representation A’, we discover this formulation to be unacceptable, and we

have to fall back to the previous inefficient translation.

For example, consider the datatype ’a t = ’a -> B code, where we wish to make different

static assumptions for different ’a. There is no way of translating this with the second formu-

lation for it would explicitly fix the static assumptions for one particular instance of ’a in the

type. This is a problem encountered when translating the tagless-final embedding of STLC [4]

into Lys7, partially resolved by opting for the first formulation.

Another example is existential quantification: ∃’a.’a -> B code. It is possible to translate it

using the second formulation, but this breaks the data abstraction and exposes the internals of a

particular implementation of ’a, which is not acceptable. This is exactly the issue encountered

during the adaptation of stream fusion to Lys step by step following [25], when trying to use

CPS to deconstruct the hidden state tuple at stage 0, and is why the result shown in fig. 4.7

still has a spurious match statement in the generated code.

Both cases justify the importance of enabling quantification (universal, existential or higher-

kinded) over contexts, which motivates Murase’s recent work [36].

4.4 Summary

In this chapter, we have evaluated Lys’s correctness, performance and expressiveness. With

a corpus of examples, we provided empirical evidence for the correctness of the type system

and the evaluator. We then showed that Lys, like partial evaluation, enables substantial albeit

linear speed-ups, and presented a critique of our evaluation, arguing that it is dependent on

the program, the programmer, and the paradigm. Motivated by the last point, we carried

out a comprehensive evaluation of Lys’ expressiveness compared to ν□ and MetaOCaml. We

demonstrated that Lys can implement any staged generative ν□ program. We also uncovered

Lys’ limitations compared to MetaOCaml, motivating the latest CMTT extensions.

7Tagless-final is a way of embedding languages without using tagged datatypes. Details in appendix B.3.2

Chapter 5

Conclusion

This project was a success: Lys exceeded all the core success criteria, and several challenging

extensions were implemented, making Lys a practical MSP language.

As set out in the introduction, I explored various aspects of CMTT’s power as a practical

MSP paradigm by demonstrating its applications in signal processing (staged convolution),

accelerating common algorithms (staged regular expression matcher), embedding DSLs (staged

while, staged flowchart, staged tagless-final lambda interpreter) and optimised data structures

(staged stream fusion). Some of them are novel adaptations from alternative paradigms.

I also showed that Lys can provide linear, albeit substantial, speed-ups, depending on the

programmer, and demonstrated both its strengths and limitations in expressiveness compared

to other paradigms. These provide motivation for state-of-the-art CMTT extensions

[20, 36].

5.1 Lessons learnt

This project was carried out with some unexpected events leading to major working plan

overhauls.

Firstly, I underestimated the complexity hidden behind CMTT’s simplicity. Substantial time

was consumed in reading about this long-standing field of research. As I added different con-

structs, the complexity piled up and I observed unexpected interactions (or their puzzling

absence) between different primitives and language constructs, making certain originally men-

tioned extensions unfeasible. This demonstrates how difficult it is to put pristine type

theories like CMTT into practical use.

Secondly, more time should have been allocated to the write-up. The theoretical complexity of

this project contributed to the challenge of explaining the subject matter and demonstrating

the power of the language, without providing an excessive amount of theoretical background.

In hindsight, it was a satisfying journey to work from barebone CMTT, attempting the design

problems the latest papers expose.

39

40 CHAPTER 5. CONCLUSION

5.2 Future work

Lys can be extended in various directions:

• Polymorphic, multi-level boxes with code pattern-matching [20]

• Context polymorphism [35, 36], making Lys have expressiveness close to λ⃝

• A Lisp-like notation where unboxing can be done without the binder [10]

• Algebraic effects typed with contextual modality [50]

• A Hindley-Milner type system [33], to enable type inference

• A MetaOCaml-style [23] runtime code generating compiler, but with Squid-like code

pattern-matching [41]

Bibliography

[1] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts,

Tools, and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley

Professional, 2004. isbn: 0321227255.

[2] B. W. Boehm. “A spiral model of software development and enhancement”. In: Computer

21.5 (May 1988), pp. 61–72. issn: 1558-0814. doi: 10.1109/2.59.

[3] C. CALCAGNO, E. MOGGI, and T. SHEARD. “Closed types for a safe imperative

MetaML”. In: Journal of Functional Programming 13.3 (2003), pp. 545–571. doi: 10.

1017/S0956796802004598.

[4] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. “Finally Tagless, Partially Eval-

uated”. In: Programming Languages and Systems. Ed. by Zhong Shao. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2007, pp. 222–238. isbn: 978-3-540-76637-7.

[5] James Chapman et al. “System F in Agda, for Fun and Profit”. In: Mathematics of Pro-

gram Construction: 13th International Conference, MPC 2019, Porto, Portugal, October

7–9, 2019, Proceedings. Porto, Portugal: Springer-Verlag, 2019, pp. 255–297. isbn: 978-3-

030-33635-6. doi: 10.1007/978-3-030-33636-3_10. url: https://doi.org/10.1007/

978-3-030-33636-3_10.

[6] Robert Chatley, Alastair Donaldson, and Alan Mycroft. “The Next 7000 Programming

Languages”. In: Computing and Software Science: State of the Art and Perspectives. Ed.

by Bernhard Steffen and Gerhard Woeginger. Cham: Springer International Publishing,

2019, pp. 250–282. isbn: 978-3-319-91908-9. doi: 10.1007/978-3-319-91908-9_15.

url: https://doi.org/10.1007/978-3-319-91908-9_15.

[7] Core library. url: https://opensource.janestreet.com/core/.

[8] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. “Stream Fusion: From Lists to

Streams to Nothing at All”. In: Proceedings of the 12th ACM SIGPLAN International

Conference on Functional Programming. ICFP ’07. Freiburg, Germany: Association for

Computing Machinery, 2007, pp. 315–326. isbn: 9781595938152. doi: 10.1145/1291151.

1291199. url: https://doi.org/10.1145/1291151.1291199.

[9] R. Davies. “A temporal-logic approach to binding-time analysis”. In: Proceedings 11th

Annual IEEE Symposium on Logic in Computer Science. 1996, pp. 184–195. doi: 10.

1109/LICS.1996.561317.

[10] Rowan Davies and Frank Pfenning. “A Modal Analysis of Staged Computation”. In: J.

ACM 48.3 (May 2001), pp. 555–604. issn: 0004-5411. doi: 10.1145/382780.382785.

[11] Georg Fantner. A brief introduction to error analysis and propagation - EPFL. url:

https : / / www . epfl . ch / labs / lben / wp - content / uploads / 2018 / 07 / Error -

Propagation_2013.pdf.

41

https://doi.org/10.1109/2.59
https://doi.org/10.1017/S0956796802004598
https://doi.org/10.1017/S0956796802004598
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1007/978-3-319-91908-9_15
https://doi.org/10.1007/978-3-319-91908-9_15
https://opensource.janestreet.com/core/
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1109/LICS.1996.561317
https://doi.org/10.1109/LICS.1996.561317
https://doi.org/10.1145/382780.382785
https://www.epfl.ch/labs/lben/wp-content/uploads/2018/07/Error-Propagation_2013.pdf
https://www.epfl.ch/labs/lben/wp-content/uploads/2018/07/Error-Propagation_2013.pdf

42 BIBLIOGRAPHY

[12] Nate Foster. CS 4110 – Programming Languages and Logics: Lecture 27: Recursive Types.

url: https://www.cs.cornell.edu/courses/cs4110/2012fa/lectures/lecture27.

pdf.

[13] Yoshihiko Futamura. “Partial Evaluation of Computation Process—AnApproach to a

Compiler-Compiler”. In: Higher Order Symbol. Comput. 12.4 (Dec. 1999), pp. 381–391.

issn: 1388-3690. doi: 10.1023/A:1010095604496. url: https://doi.org/10.1023/A:

1010095604496.

[14] Murdoch Gabbay and Aleksandar Nanevski. “Denotation of syntax and metaprogram-

ming in contextual modal type theory (CMTT)”. In: CoRR abs/1202.0904 (2012). arXiv:

1202.0904. url: http://arxiv.org/abs/1202.0904.

[15] Jacques Garrigue. “Programming with Polymorphic Variants”. In: 1998.

[16] John Hatcliff. “An Introduction to Online and Offline Partial Evaluation Using a Simple

Flowchart Language”. In: Partial Evaluation. Ed. by John Hatcliff, Torben Æ Mogensen,

and Peter Thiemann. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 20–82.

isbn: 978-3-540-47018-2.

[17] K. Hinsen. “Staged Computation: The Technique You Did Not Know You Were Using”.

In: Computing in Science amp; Engineering 22.04 (July 2020), pp. 99–103. issn: 1558-

366X. doi: 10.1109/MCSE.2020.2985508.

[18] Roshan James. Core bench: Better micro-benchmarks through linear regression. url:

https://blog.janestreet.com/core_bench-micro-benchmarking-for-ocaml/.

[19] Meteja Jamnik. Logic and proof. url: https://www.cl.cam.ac.uk/teaching/2223/

LogicProof/.

[20] Junyoung Jang et al. “Moebius: Metaprogramming using Contextual Types - The stage

where System F can pattern match on itself (Long Version)”. In: CoRR abs/2111.08099

(2021). arXiv: 2111.08099. url: https://arxiv.org/abs/2111.08099.

[21] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic

Program Generation. USA: Prentice-Hall, Inc., 1993. isbn: 0130202495.

[22] Oleg Kiselyov. “Reconciling Abstraction with High Performance: A MetaOCaml ap-

proach”. In: Found. Trends Program. Lang. 5.1 (2018), pp. 1–101. doi: 10 . 1561 /

2500000038.

[23] Oleg Kiselyov. “The Design and Implementation of BER MetaOCaml”. In: Functional

and Logic Programming. Ed. by Michael Codish and Eijiro Sumii. Cham: Springer Inter-

national Publishing, 2014, pp. 86–102. isbn: 978-3-319-07151-0.

[24] Oleg Kiselyov, Yukiyoshi Kameyama, and Yuto Sudo. “Refined Environment Classifiers”.

In: Programming Languages and Systems. Ed. by Atsushi Igarashi. Cham: Springer In-

ternational Publishing, 2016, pp. 271–291. isbn: 978-3-319-47958-3.

[25] Oleg Kiselyov et al. “Stream Fusion, to Completeness”. In: CoRR abs/1612.06668 (2016).

arXiv: 1612.06668. url: http://arxiv.org/abs/1612.06668.

[26] Eugene Kohlbecker et al. “Hygienic Macro Expansion”. In: Proceedings of the 1986 ACM

Conference on LISP and Functional Programming. LFP ’86. Cambridge, Massachusetts,

USA: Association for Computing Machinery, 1986, pp. 151–161. isbn: 0897912004. doi:

10.1145/319838.319859. url: https://doi.org/10.1145/319838.319859.

[27] Neelakantan Krishnaswami. Types. url: https://www.cl.cam.ac.uk/teaching/2223/

Types/.

https://www.cs.cornell.edu/courses/cs4110/2012fa/lectures/lecture27.pdf
https://www.cs.cornell.edu/courses/cs4110/2012fa/lectures/lecture27.pdf
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1023/A:1010095604496
https://arxiv.org/abs/1202.0904
http://arxiv.org/abs/1202.0904
https://doi.org/10.1109/MCSE.2020.2985508
https://blog.janestreet.com/core_bench-micro-benchmarking-for-ocaml/
https://www.cl.cam.ac.uk/teaching/2223/LogicProof/
https://www.cl.cam.ac.uk/teaching/2223/LogicProof/
https://arxiv.org/abs/2111.08099
https://arxiv.org/abs/2111.08099
https://doi.org/10.1561/2500000038
https://doi.org/10.1561/2500000038
https://arxiv.org/abs/1612.06668
http://arxiv.org/abs/1612.06668
https://doi.org/10.1145/319838.319859
https://doi.org/10.1145/319838.319859
https://www.cl.cam.ac.uk/teaching/2223/Types/
https://www.cl.cam.ac.uk/teaching/2223/Types/

BIBLIOGRAPHY 43

[28] P. J. Landin. “The next 700 Programming Languages”. In: Commun. ACM 9.3 (Mar.

1966), pp. 157–166. issn: 0001-0782. doi: 10.1145/365230.365257. url: https://doi.

org/10.1145/365230.365257.

[29] Xavier Leroy et al. “The OCaml system: Documentation and user’s manual”. In: INRIA

3 (), p. 42.

[30] Jeffrey K. Liker. Toyota Way: 14 Management Principles from the World’s Greatest Man-

ufacturer. en. 1st Edition. New York: McGraw-Hill Education, 2004. isbn: 9780071392310.

url: https://www.accessengineeringlibrary.com/content/book/9780071392310.

[31] Simon Marlow et al. “Haskell 2010 language report”. In: Available online http://www.

haskell. org/(May 2011) (2010).

[32] John McCarthy. “LISP: A Programming System for Symbolic Manipulations”. In:

Preprints of Papers Presented at the 14th National Meeting of the Association for Com-

puting Machinery. ACM ’59. Cambridge, Massachusetts: Association for Computing Ma-

chinery, 1959, pp. 1–4. isbn: 9781450373647. doi: 10.1145/612201.612243. url: https:

//doi.org/10.1145/612201.612243.

[33] Robin Milner. “A theory of type polymorphism in programming”. In: Journal of Computer

and System Sciences 17.3 (1978), pp. 348–375. issn: 0022-0000. doi: https://doi.org/

10.1016/0022-0000(78)90014-4. url: https://www.sciencedirect.com/science/

article/pii/0022000078900144.

[34] Eugenio Moggi et al. “An Idealized MetaML: Simpler, and More Expressive”. In: Program-

ming Languages and Systems. Ed. by S. Doaitse Swierstra. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1999, pp. 193–207. isbn: 978-3-540-49099-9.

[35] Yuito Murase and Yuichi Nishiwaki. “Polymorphic Context for Contextual Modality”. In:

CoRR abs/1801.09225 (2018). arXiv: 1801.09225. url: http://arxiv.org/abs/1801.

09225.

[36] Yuito Murase, Yuichi Nishiwaki, and Atsushi Igarashi. “Contextual Modal Type Theory

with Polymorphic Contexts”. In: Programming Languages and Systems. Ed. by Thomas

Wies. Cham: Springer Nature Switzerland, 2023, pp. 281–308. isbn: 978-3-031-30044-8.

[37] ALEKSANDAR NANEVSKI and FRANK PFENNING. “Staged computation with

names and necessity”. In: Journal of Functional Programming 15.6 (2005), pp. 893–939.

doi: 10.1017/S095679680500568X.

[38] Aleksandar Nanevski and Frank Pfenning. “Functional Programming with Names and

Necessity”. AAI3143944. PhD thesis. USA, 2004. isbn: 0496019651.

[39] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. “Contextual Modal Type

Theory”. In: ACM Trans. Comput. Logic 9.3 (June 2008). issn: 1529-3785. doi: 10.

1145/1352582.1352591.

[40] Ounit2 2.2.6 · ocaml package. url: https://ocaml.org/p/ounit2/2.2.6/doc/index.

html.

[41] Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. “Squid: Type-Safe, Hygienic,

and Reusable Quasiquotes”. In: Proceedings of the 8th ACM SIGPLAN International

Symposium on Scala. SCALA 2017. Vancouver, BC, Canada: Association for Computing

Machinery, 2017, pp. 56–66. isbn: 9781450355292. doi: 10.1145/3136000.3136005.

[42] Brigitte Pientka. “Beluga: Programming with Dependent Types, Contextual Data, and

Contexts”. In: Functional and Logic Programming. Ed. by Matthias Blume, Naoki

Kobayashi, and Germán Vidal. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,

pp. 1–12. isbn: 978-3-642-12251-4.

https://doi.org/10.1145/365230.365257
https://doi.org/10.1145/365230.365257
https://doi.org/10.1145/365230.365257
https://www.accessengineeringlibrary.com/content/book/9780071392310
https://doi.org/10.1145/612201.612243
https://doi.org/10.1145/612201.612243
https://doi.org/10.1145/612201.612243
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://arxiv.org/abs/1801.09225
http://arxiv.org/abs/1801.09225
http://arxiv.org/abs/1801.09225
https://doi.org/10.1017/S095679680500568X
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://ocaml.org/p/ounit2/2.2.6/doc/index.html
https://ocaml.org/p/ounit2/2.2.6/doc/index.html
https://doi.org/10.1145/3136000.3136005

44 BIBLIOGRAPHY

[43] Matthias Puech. “A Contextual Account of Staged Computations”. preprint on webpage

at http://cedric.cnam.fr/~puechm/draft_contextual.pdf. 2016.

[44] Tim Sheard. “Using MetaML: a Staged Programming Language”. In: vol. 1608. Apr.

1999. isbn: 978-3-540-66241-9. doi: 10.1007/10704973_5.

[45] Walid Taha and Michael Florentin Nielsen. “Environment Classifiers”. In: Proceedings of

the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

POPL ’03. New Orleans, Louisiana, USA: Association for Computing Machinery, 2003,

pp. 26–37. isbn: 1581136285. doi: 10.1145/604131.604134. url: https://doi.org/

10.1145/604131.604134.

[46] Walid Taha and Tim Sheard. “Multi-Stage Programming with Explicit Annotations”.

In: Proceedings of the 1997 ACM SIGPLAN Symposium on Partial Evaluation and

Semantics-Based Program Manipulation. PEPM ’97. Amsterdam, The Netherlands: As-

sociation for Computing Machinery, 1997, pp. 203–217. isbn: 0897919173. doi: 10.1145/

258993.259019.

[47] Walid Taha et al. “MetaOCaml: A compiled, type-safe multi-stage programming lan-

guage.” In: (Jan. 2004).

[48] J.B. Wells. “Typability and type checking in System F are equivalent and undecid-

able”. In: Annals of Pure and Applied Logic 98.1 (1999), pp. 111–156. issn: 0168-0072.

doi: https://doi.org/10.1016/S0168- 0072(98)00047- 5. url: https://www.

sciencedirect.com/science/article/pii/S0168007298000475.

[49] Philip Wickline, Peter Lee, and Frank Pfenning. “Run-Time Code Generation and Modal-

ML”. In: SIGPLAN Not. 33.5 (May 1998), pp. 224–235. issn: 0362-1340. doi: 10.1145/

277652.277727. url: https://doi.org/10.1145/277652.277727.

[50] Nikita Zyuzin and Aleksandar Nanevski. Contextual Modal Types for Algebraic Effects

and Handlers. 2021. arXiv: 2103.02976 [cs.PL].

http://cedric.cnam.fr/~puechm/draft_contextual.pdf
https://doi.org/10.1007/10704973_5
https://doi.org/10.1145/604131.604134
https://doi.org/10.1145/604131.604134
https://doi.org/10.1145/604131.604134
https://doi.org/10.1145/258993.259019
https://doi.org/10.1145/258993.259019
https://doi.org/https://doi.org/10.1016/S0168-0072(98)00047-5
https://www.sciencedirect.com/science/article/pii/S0168007298000475
https://www.sciencedirect.com/science/article/pii/S0168007298000475
https://doi.org/10.1145/277652.277727
https://doi.org/10.1145/277652.277727
https://doi.org/10.1145/277652.277727
https://arxiv.org/abs/2103.02976

Appendix A

More implementation

A.1 Algebraic datatypes

Design

Algebraic data types (ADT) is Lys’ way of representing data structures, as user-defined com-

binations of composite and recursive types.

In Lys’ syntax, such types are included as OCaml-like recursive tagged variant types, only

declarable at the top level as follows:

1 datatype intlist = Nil | Cons of (int * intlist);;

where Nil and Cons are constructors of intlist values.

We then also include a first-level pattern-matching construct match e with Nil -> ... |

Cons (x, xs) -> ... as in OCaml acting like a destructor of ADTs. This construct is then

also extended to support matching n-ary products types, sum types, Strings (both matching

the whole string, as in match e with "some string" -> ... and matching the string as the

concatenation of a character and the rest of the string: match e with c ++ s -> ...).

Note that this construct does not support multi-level pattern matching yet as in match e

with Cons (Cons (x, xs), xxs) -> This trade-off was made by principle 1 because

any multi-level pattern match can be expressed as a series of first-level pattern matches, and

thus, we do not lose expressiveness.

Note on a more formal presentation

Formally, recursive types are usually introduced as the least fixpoint of a function from types

to types [12]. To avoid confusion, we first consider monomorphic recursive types.

We use the following syntax:

A ::= ... | µα.B | α
e ::= ... | fold (e) | unfold (e)

where α is a type variable and µ corresponds to a fix-point combinator for types.

45

46 APPENDIX A. MORE IMPLEMENTATION

To understand what this means, we can define capture-avoiding type substitution on types and

terms in the standard way, with syntax {A/α}B and {A/α}e respectively. Then, what we

mean by µ being a fix-point combinator is that for any expression µα.T , we have that:

µα. T ∼= {µα. T/α}T

In other words, the left-hand side and right-hand side are isomorphic, by which we mean that

we have witnesses fold and unfold corresponding to the introduction and elimination of µ types

respectively:

A; Σ;Θ;∆; Γ ⊢ e : {µα.T/}T
µI

A; Σ;Θ;∆; Γ ⊢ fold e : µα.T

A; Σ;Θ;∆; Γ ⊢ e : µα.T
µE

A; Σ;Θ;∆; Γ ⊢ unfold e : {µα.T/}T

Then, we can represent a list as the recursive type µα.unit + (int × α), Nil be represented

as fold () and Cons (x, xs) as fold (x, xs), and a match statement becomes unfolding and

case-splitting on the sum type.

This representation of recursive types is named iso-recursive, for the fix-point combinator µα.T

is only isomorphic to the substituted type. There also exists an equi-recursive formulation,

where both sides of the isomorphism are defined to be equal.

Lys has iso-recursive types because ADTs are represented as tagged variant types, and the fold

constructs are explicitly inserted as the datatype’s constructors: tagging a value (x, xs) with

Cons is indeed a form of explicit folding.

Then to achieve polymorphic datatypes, we simply generalise this fixpoint operator to support

kinded bindings à la System-Fωµ [5], i.e. support fixpoints of not only plain types but also type

constructors (of the form ’a t in Lys).

A.2 Existentials

Existential types form the standard way of both providing data abstraction and enabling al-

ternative implementation for data structures such as streams [25].

Lys provides a standard implementation of existential types ∃α. T , as presented in [27].

Θ ⊢ A type Θ, α ⊢ B type A; Σ;Θ;∆; Γ ⊢ e : {A/α}B
∃I

A; Σ;Θ;∆; Γ ⊢ pack (∃α.B,A, e) : ∃α.B

A; Σ;Θ;∆; Γ ⊢ e : ∃α.B A; Σ;Θ, α; ∆; Γ, x : B ⊢ e′ : C Θ ⊢ C type
∃E

A; Σ;Θ;∆; Γ ⊢ let pack (α, x) = e in e′ : C

The type ∃α. T specifies an interface type T which depends on some hidden type denoted by

type variable α. Lys then enables the programmer to pack a value implementing the interface

∃α.B with hidden type A. Unpacking is done with let pack, which provides a binder x

which corresponds to the implementation, and type variable α to denote the hidden type. The

A.2. EXISTENTIALS 47

body of such an expression must be of a type independent of the hidden implementation, i.e.

independent of the type variable α, to avoid the leakage of the hidden type.

This is very close to OCaml modules, where packs are modules with one hidden type t and

unpacking corresponds to let open M in

Appendix B

More Evaluation

B.1 Correctness

B.1.1 Type theoretical correctness: table of proofs in ICS4

Valid proposition in ICS4 Interpretation File

[x : C]A→ [y1 : C, y2 : D]A Context weakening m1.lys

[x1 : C, x2 : C]A→ [y : C]A Merging two assumptions m2.lys

[x : A]A Identity m3.lys

[x : A]B → [y1 : A][y2 : B]C → [z : A]C Applying Modus ponens in

the box

m4.lys

[]A→ A Reflexivity of boxes (axiom

T)

m5.lys

[x : C]A→ [y1 : D][y2 : C]A Contextual variant of axiom

4

m6.lys

[x : C](A→ B)→ [y : D]A→ [z1 : C, z2 : D]B Contextual variant of axiom

K

m7.lys

[x : A](A→ B)→ [y : B]C → [z : A]C Applying Modus ponens on

assumptions in the context

m8.lys

Table B.1: Valid propositions in ICS4 and their Lys proofs

B.1.2 Staged Pow execution trace

We execute the following program

1 let rec (pow: int -> [x:int]int) = fun (n:int) ->

2 if n = 0 then box (x:int |- 1)

3 else

4 let box u = pow (n-1) in

5 box (x:int |-

6 x * (u with (x))

7)

8 in

9 pow 2;;

48

B.1. CORRECTNESS 49

and generate the execution trace with the single-step reducer by executing the command:

1 dune exec lys -- -i ssv -pp [file_containing_pow] > traces/pow_trace

and thus obtain the execution trace (abbreviated) as follows:

1 ------------------------------

2 Reduction steps (#): 16

3 val: [; x: int |- int] = box (x: int|- (x{0} * (x{0} * 1)))

4 ------------------STEPS ----------------

5 let rec pow: (int -> [; x: int |- int]) =

6 (fun (n: int) -> (

7 if ((n{0} = 0)) then box (x: int|- 1) else

8 let box u =

9 (pow{1} (n{0} - 1))

10 in

11 box (x: int|- (x{0} * (u{0} with (x{0})))

12)))

13 in

14 (pow{0} 2)

15 =====>>>>>

16 ((fun (n: int) -> (

17 if ((n{0} = 0)) then box (x: int|- 1)

18 else

19 let box u =

20 (let rec pow: (int -> [; x: int |- int]) =

21 (fun (n: int) -> (if ((n{0} = 0)) then

22 box (x: int|-

23 1

24)

25 else

26 let box u =

27 (pow{1} (n{0} - 1))

28 in

29 box (x: int|-

30 (x{0} * (u{0} with (x{0})))

31)))

32 in

33 pow {0} (n{0} - 1))

34 in

35 box (x: int|- (x{0} * (u{0} with (x{0}))))))

36 2)

37 =====>>>>>

38 (if ((2 = 0)) then box (x: int|- 1)

39 else let box u =

40 (let rec pow: (int -> [; x: int |- int]) =

41 (fun (n: int) -> (if ((n{0} = 0)) then

42 box (x: int|- 1)

43 else let box u =

44 (pow{1} (n{0} - 1))

45 in

46 box (x: int|- (x{0} * (u{0} with (x{0}))))))

47 in

48 pow {0} (2 - 1))

49 in

50 box (x: int|- (x{0} * (u{0} with (x{0})))))

50 APPENDIX B. MORE EVALUATION

51 =====>>>>>

52 (if (false) then box (x: int|- 1)

53 else let box u =

54 (let rec pow: (int -> [; x: int |- int]) =

55 (fun (n: int) -> (if ((n{0} = 0)) then

56 box (x: int|- 1)

57 else

58 let box u =

59 (pow{1} (n{0} - 1))

60 in

61 box (x: int|- (x{0} * (u{0} with (x{0}))))))

62 in

63 pow {0} (2 - 1))

64 in

65 box (x: int|-

66 (x{0} * (u{0} with (x{0})))

67))

68 =====>>>>>

69 let box u =

70 (let rec pow: (int -> [; x: int |- int]) =

71 (fun (n: int) -> (if ((n{0} = 0)) then

72 box (x: int|-

73 1

74)

75 else

76 let box u =

77 (pow{1} (n{0} - 1))

78 in

79 box (x: int|-

80 (x{0} * (u{0} with (x{0})))

81)))

82 in

83 pow{0} (2 - 1))

84 in

85 box (x: int|-

86 (x{0} * (u{0} with (x{0})))

87)

88 =====>>>>>*

89 [ABRIEVIATED]

90 =====>>>>>

91 let box u =

92 let box u =

93 box (x: int|- 1)

94 in box (x: int|- (x{0} * (u{0} with (x{0}))))

95 in box (x: int|- (x{0} * (u{0} with (x{0}))))

96 =====>>>>>

97 let box u =

98 box (x: int|- (x{0} * 1))

99 in

100 box (x: int|- (x{0} * (u{0} with (x{0}))))

101 =====>>>>>

102 box (x: int|- (x{0} * (x{0} * 1)))

B.2. PERFORMANCE 51

B.2 Performance

B.2.1 Initial experiments showing the distribution of runtimes

Clearly, as shown here, the distribution of runtimes without trying to alleviate the impact of

GC is not Gaussian at all.

Figure B.1: Empirical distribution of execution times for the staged while interpreter specialised

with fib applied to 100

B.2.2 Uncertainty propagation for quotients

We have obtained two estimates with confidence intervals [t1 − i1; t1 + j1] and [t2 − i2; t2 + j2].

We now want to estimate the error bounds for the quotient, t1/t2.

Assuming both estimates are drawn of two independent Gaussian distributions X1 and X2, we

can first compute the mean and standard deviation of these distributions as follows:

• The means will be taken as our estimates, respectively: µ̂1 = t1, µ̂2 = t2.

• The 95% confidence interval corresponds to a deviation of ±1.96σ from the mean. There-

fore, we can use i’s and j’s to estimate the respective standard deviations (by assuming

a symmetric distribution and taking the largest of i and j as a safe approximation for

1.96σ). So we get σ̂1 = max(i1, j1)/1.96 and σ̂2 = max(i2, j2)/1.96.

Then, to get the new confidence interval [t1/t2− inew; t1/t2+ jnew], it suffices to do the standard

(independent Gaussian) error propagation for quotients [11]:

inew = jnew = 1.96σ̂new = 1.96| µ̂1

µ̂2

|

√
(
σ̂1

µ̂1

)2 + (
σ̂2

µ̂2

)2

B.2.3 Fibonacci in Flowchart

Here is the program computing the Fibonacci numbers in WHILE:

1 IN i;

2 OUT t1;

3 t1 = 1, t2 = 1;

4 if (i<=1){

5 do_nothing;

6 } else {

7 while (i >= 2) {

52 APPENDIX B. MORE EVALUATION

8 t1 = t2 + t1; t = t1; t1 = t2; t2 = t;

9 i = i - 1;

10 }

11 }

12

B.3 Expressiveness

B.3.1 Translating ν□ to Lys

Convolution – a vanilla ν□ program

We present the staged convolution function translated from [38, p. 82].

1 let rec conv_staged: intlist -> [ys: intlist] intlist -> [ys: intlist]

intlist =

2 fun (xs: intlist) -> fun (cont: [ys: intlist]intlist) ->

3 match xs with

4 | Nil -> let box u = cont in box (ys: intlist|- u with (ys))

5 | Cons (x, xs) ->

6 let f:[ys: intlist]intlist -> [ys: intlist]intlist = conv_staged

xs in

7 let box lifted_x = lift[int] x in

8 let box u = cont in

9 f (box (ys: intlist |-

10 match ys with

11 | Cons (hd, tl) -> Cons ((lifted_x with ()) * hd, u with (tl

))

12));;

Regexp – a support polymorphic ν□ program

We present the staged regexp translated from [38, p. 88].

1 let rec acc2:(regexp -> [cont: [str:string , prev_str: string , loop: string

-> bool]bool][str: string , prev_str: string , loop: string -> bool]bool) =

2 fun (exp: regexp) ->

3 match exp with

4 | Empty ->

5 box (cont: [str:string , prev_str: string , loop: string -> bool]bool

|-

6 cont

7)

8 | Plus (e1 , e2) ->

9 let box res1 = acc2 e1 in

10 let box res2 = acc2 e2 in

11 box (cont: [str:string , prev_str: string , loop: string -> bool]bool

|-

12 let box unboxed_res1 = (res1 with (cont)) in

13 let box unboxed_res2 = (res2 with (cont)) in

14 box (str: string , prev_str: string , loop: string -> bool |-

15 (unboxed_res1 with (str , prev_str , loop)) || (unboxed_res2

with (str , prev_str , loop))

16)

B.3. EXPRESSIVENESS 53

17)

18 | Times (e1 , e2) ->

19 let box res1_ = acc2 e1 in

20 let box res2_ = acc2 e2 in

21 box (cont: [str:string , prev_str: string , loop: string -> bool]bool

|-

22 res1_ with (res2_ with (cont))

23)

24 | Const (c) ->

25 let box lifted_unboxed_c = lift[char] c in

26 box (cont: [str:string , prev_str: string , loop: string -> bool]bool

|-

27 let box unboxed_cont = cont in

28 box (str: string , prev_str: string , loop: string -> bool |-

29 match str with

30 | "" -> false

31 | x++xs ->

32 (x = (lifted_unboxed_c with ())) && (unboxed_cont with (

xs, prev_str , loop))

33)

34)

35 | Star (e) ->

36 let box res = acc2 e in

37 box (cont: [str: string , prev_str: string , loop: string -> bool]bool

|-

38 let box unboxed_cont = cont in

39 box (str: string , prev_str: string , loop: string -> bool |-

40 (* Construct cont*)

41 let new_cont: [str: string , prev_str: string , loop: string

-> bool]bool = box (str: string , prev_str: string , loop: string -> bool

|-

42 if str = prev_str then false

43 else loop str

44)

45 in

46 let box unboxed_acc2_e_new_cont = res with (new_cont) in

47 let rec star_loop: string -> bool =

48 fun (s: string) ->

49 (unboxed_cont with (s, prev_str , loop)) ||

50 (unboxed_acc2_e_new_cont with (s, s, star_loop))

51 in

52 star_loop str

53)

54)

55 ;;

56

57

58

59 let accept2 :(regexp ->[str:string]bool) =

60 fun (exp:regexp) ->

61 let null:[str:string , prev_str: string , loop: string -> bool]bool =

62 box (str: string , prev_str: string , loop: string -> bool |-

63 str = ""

64)

65 in

54 APPENDIX B. MORE EVALUATION

66 let box place_holder = box (|-fun (x:string) -> false) in

67 let box unboxed_acc2_exp = acc2 exp in

68 let box unboxed_acc_exp_null = unboxed_acc2_exp with (null) in

69 box (str: string |-

70 unboxed_acc_exp_null with (str , "", place_holder with ())

71)

72 ;;

B.3.2 MetaOCaml

tagless-final Lambda

Tagless-final style is an alternative to using algebraic datatypes in order to embed domain-

specific languages in functional host languages. It is a very elegant, extensible style, whereby

instead of using tagged datatypes to present the AST, we use the final representation, i.e. where

each DSL construct is represented as a destructor function (instead of an AST node constructor)

and is hardwired to one particular representation in the host language. For example, if we choose

to embed a calculator language in tagless-final style, then instead of representing ‘+’ as the

variant Plus of expr * expr, we represent it as plus: repr -> repr -> repr, for some

repr.

The power of this representation is that by using the same interface, we can specify different

interpreters of the same language. If we choose repr = int, and define plus as expected,

applying plus will directly evaluate to the desired result in the host language, so we get an

evaluator. If we choose repr = string and define plus = fun x y -> x "̂+" ŷ then we get

a pretty printer. Importantly, if we choose repr = int code (in MetaOCaml), we can get a

compiler.

The author recommends further reading with Carette et al.’s paper [4].

I encountered the aforementioned problem when doing a tagless-final embedding of STLC in

Lys using De Bruijn indices. The way this embedding works in MetaOCaml is by having binders

represented as De Bruijn indices, and by having a representation of the form (’a, ’h) repr

= ’h -> ’a code, where ’h represents a list of bindings, i.e. a context, which is unwrapped

statically by the final embedding of De Bruijn indices.

This, when translated into Lys, does not work: we are forced to get datatype (’a, ’h) repr

= Ctx of [h: ’h |- ’a];; (because assumptions vary for each instantiation of ’h), which

clearly has ’h as an unannotated dynamic type, so the unwrapping has to be done dynamically.

An implementation is included under example programs/tagless final/lambda tagless.lys.

Appendix C

Project Proposal

55

May 12, 2023

2 APPENDIX C. PROJECT PROPOSAL

Project Originators: Alan Mycroft and the author

Project Supervisors: Jeremy Yallop and Alan Mycroft

Project Overseers: Alan Blackwell and Srinivasan Keshav

Introduction

Multi-stage programming orMSP is a metaprogramming paradigm that allows the programmer

to divide the execution of a program into stages, or to “stage” it. Each stage generates code

for the next phase and often specialises it with the information available at the current stage.

The final stage runs the code and produces the final output [17]. This is done by having a

mechanism to control the order of evaluation of the expressions [44] – operators similar to

quasiquotes in Lisp (except statically typed and lexically scoped), with which one can delay or

advance computations.

MSP is, in a way, analogous to program compilation & execution and partial evaluation, as

presented in [34]. Intuitively, this mechanism resembles having explicit control on the order of

(beta) reduction in lambda calculus so as to control the number of such reductions needed to

reach β normal form. In practical terms, it is close to automatic inline expansion and partial

evaluation optimisations in compilers, but is instead expressed as code annotations by the

programmer.

As a metaprogramming paradigm, MSP involves the manipulation of code fragments. Usually,

languages as such either have a mechanism dealing with open code (code fragments containing

free variables) or closed code (code fragments where every variable is bound). They gave rise to

respectively to two theoretical calculi: Davies’ λ⃝ based on linear temporal logic dealing with

open code [9] and Davies & Pfenning’s λ□ based on modal logic dealing with closed code [10].

Modern, practical approaches to MSP often tend to result from the unification the two calculi.

Significant work had been done on refining λ⃝ to enable static typing and lexical scoping, and

hence type safe execution of generated code. This is the approach taken by MetaML [46] and its

derived languages like MetaOCaml [47], but it gives rise to complex type systems with rather

unclear logical foundations.

Instead, we focus on the alternative approaches presented by Nanevski [37] which instead relaxes

the constraints of the closed code type constructor in λ□ with context on which variables are free

in the code fragment in question. Nanevski’s work on contextual modal type theory (CMTT)

[39] further generalises the approach and presents a strong logical foundation for MSP. This

work was then extended in various ways [20, 50, 35]. While languages (Beluga [42]) based on

CMTT have been developed, they were mainly focused on the Curry-Howard isomorphism and

the theorem-proving aspects of the calculus.

Project

In this project, I shall aim to create an interpreter for an ML-like pure functional, statically

typed language called Lys implementing the calculus presented in Nanevski & Pfenning 2005

3

[37] or Nanevski 2008 [39] (also based on the denotational semantics presented in [14]) specially

for the purpose of multi-stage programming, following a thorough evaluation of the feasibility

of implementing the latter (CMTT, Nanevski 2008), during the preparation phase. This prepa-

ration is necessary because there is no clear operational semantics for CMTT, but later papers

have presented denotational semantics and operational semantics for extended/generalised ver-

sions of the original CMTT.

The implementation will be done in a functional language like Haskell or OCaml, and this

decision shall be made after the preparation phase.

Extensions can then include implementing the various extensions by the different papers fol-

lowing either approach, as will be detailed hereunder, and the choice of extensions should not

depend on the choice of base calculus.

Main steps

1. Preparation: I shall conduct a thorough review of literature in the older and newer

paradigms developed by Nanevski and evaluate the feasibility of creating a language

based on CMTT. I shall also decide on whether to implement the language in Haskell or

OCaml.

2. Implementation: I shall implement the various components of the language, in the fol-

lowing order, such that I can generate the test cases for the next component.

(a) A lexer & parser (either coded or generated)

(b) A type checker (this is the most technically challenging part)

(c) An interpreter of the AST corresponding to the semantics

3. Evaluation: this phase will involve implementing a corpus of programs varying in complex-

ity in order to evaluate correctness of the implementation as well as relative expressiveness

and performance of the language as compared to other MSP languages.

4. Extend & Evaluate: implement various extensions and evaluate them.

Success criteria

• Design and implement a statically typed pure functional language based on the calculi of

either Nanevski 2005 (ν□) or Nanevski 2008 (simple CMTT).

• Extend the original language with additional constructs to make it more usable. This

should include at least one of:

– Primitives,

– Recursion/Fix point,

– Lists, Sum types, Product types.

4 APPENDIX C. PROJECT PROPOSAL

• Evaluate in terms of correctness, expressiveness and performance across different itera-

tions of the language and with other MSP languages.

Evaluation strategy

Apart from testing the correctness guarantees of the type system, evaluation will be largely

carried out comparatively with other existing MSP languages like Squid [41] and MetaOCaml

[47].

• Correctness of the implementation: I shall evaluate qualitatively the correctness of the

static and dynamic semantics by presenting a corpus of programs with various extensions

I will make to the calculus, and compare it against the various examples given in related

papers [38, 37, 39]. Note that the examples given by Nanevski’s older approach are still

to an extent applicable to CMTT, for the dynamic semantics are very similar.

• Expressiveness: This will involve the implementation of complex programs exploring the

limits of expressiveness. This can also include comparing expressiveness of Lys to that of

its MSP peers like MetaML/MetaOCaml and Squid/Scala by implementing the examples

given in the MetaOCaml-related and Scala-related paper, like stream fusion [25] or staging

domain specific languages interpreters to compilers [22].

• Performance: I shall evaluate Lys quantitatively with benchmarks (like the factor of

linear speed up, or an estimation of the amortised costs of specialisation as compared to

not specialising) defined by the partial evaluation community [21], with the non-staged

version, as well as with other paradigms like quote/unquote in MetaML/MetaOCaml and

speculative rewrite rules in Scala.

Possible extensions

Initial extensions

I am planning to implement the majority of the following extensions, depending on time con-

straints.

• Improve usability

– Syntactic sugar to make it easier to program

– Extend with algebraic data types (originally only sum and product types, and lists

are built in).

– Modules system (file based)

• A translation from staged code to non-staged OCaml

• JIT compilation of staged code (enabling additional evaluation in terms of compile time

and how this differs from running it directly).

More challenging extensions

I aim to implement one of the following extensions.

5

• Make multi-level and System F style parameter polymorphism (Murase 2018 [35], Moebius

[20])

• Pattern matching on code (Moebius [20])

• Some limited degree of type inference (might not be possible)

• Error handling (ECMTT [50])

• TRY Embedding MetaML in the language (there is a draft by Puech 2016 [43])

• Imperative programming (either OCaml ref or Haskell monad) – as pointed out by J.

Yallop and A. Mycroft, further evaluation of the feasibility and degree of interest of this

particular extension is needed.

Starting point

I had no previous experience in writing interpreters or compilers, or implementing programming

languages. I had done the IA Foundations of Computer Science, IB Semantics, Compiler Con-

struction and Concepts of Programming Languages courses, and will do the II Denotational

Semantics, Type Theory and Category Theory courses and units, which I will heavily draw

from. I know some functional programming and some OCaml with IA FoCS albeit without

any industry experience, and no Haskell. Prior to the start of the project, I have read re-

lated literature and have played with various metaprogramming languages/libraries like Squid

and MetaOCaml, but have not written any code pertaining to the implementation of MSP

mechanisms.

Timetable

Week 1-2: Oct 13 - Oct 26

Work:

Review literature for CMTT and evaluate the feasibility of implementing a language based on

it. Fallback to ν□ if not feasible.

Compare Haskell and OCaml as languages to implement this language.

Deadline (Oct 14): Project proposal

Milestone: Deliver a LateX document to supervisors comparing and evaluating the feasibility

of implementation of both calculi, and the choice of the language to be used.

Week 3-4: Oct 27 - Nov 9

Work:

Practice using the chosen language by writing small programs.

Design the syntax and semantics for Lys.

6 APPENDIX C. PROJECT PROPOSAL

Milestone: Syntax and semantics for Lys.

Week 5-6: Nov 10 - Nov 23

Work:

Implement the lexer and the parser or generate the lexer & parser.

If I do the latter, start reading through existing implementations of type checkers.

Milestone: Generate the AST from a text file.

Week 7-8: Nov 24 - Dec 7, (Dec 2 End of Michaelmas)

Work:

Implement the type checker (static semantics).

Note: if it turns out the type checker is more challenging, we can allow for 1 more week (half

a work-package).

Milestone: Type checker implemented

Week 9-10: Dec 8 - Dec 21

Work:

Implement the interpreter.

Milestone: Able to run programs on the interpreter.

Week 11-12: Dec 22 - Jan 4

Work:

Write the test suite of programs for evaluation (which ones exactly to be decided according to

the state of the interpreter, could include e.g. staged interpreters for DSLs or stream fusion

programs.)

Read through benchmarks for partial evaluation.

Carry evaluation out.

Milestone: Prepare a corpus of programs suitable for evaluation and LaTeX or Markdown

document providing a write up for evaluation carried out.

Week 13-14: Jan 5 - Jan 18, (Jan 17 Beginning of Lent)

Work:

Finish core.

7

Slack time & Revision.

Milestone: Pass success criteria

Week 15-16: Jan 19 - Feb 1

Work:

Write progress report.

Evaluate the feasibility of the complicated extensions.

Work on simple extensions.

Milestone: Finished writing Progress Report + Implemented some extensions + LaTeX doc-

ument on feasibility of the complicated ones.

Week 17-18: Feb 2 - Feb 15

Work:

Make presentation for the progress review.

Work on more complex extensions according to the feasibility analysis.

Deadline (Feb 3): Finish progress report & Presentation.

Milestone: Progress report and presentation.

Week 19-20: Feb 16 - Mar 1

Work:

Write introduction of dissertation.

Write preparation chapter of dissertation, adapting the notes I made on language choice and

calculus choice.

Milestone: Introduction and Preparation chapters of dissertation.

Week 21-22: Mar 2 - Mar 15

Work:

Work on extensions.

Start writing the implementation chapter.

Slack time & Revision for Papers 8 and 9.

Milestone: None

8 APPENDIX C. PROJECT PROPOSAL

Week 23-24: Mar 16 - Mar 29, (Mar 17 End of Lent)

Work:

Work on extensions

Finish implementation chapter.

Milestone: Implementation chapter.

Week 25-26: Mar 30 - Apr 12

Work:

Write evaluation chapter.

Finish dissertation and send to supervisor and DoS.

Final extensions.

Slack time.

Milestone: First draft of dissertation

Week 27-28: Apr 13 - Apr 26, (Apr 25 Beginning Easter)

Work:

Slack time & Papers 8/9 Revision.

Milestone: Revision and iterate on dissertation with respect to the feedback.

Week 29-30+: Apr 27 - May 10 + May 11-12

Work:

Final corrections and submit report.

Papers 8/9 Revision.

Deadline (May 12th): Final report

Milestone: Submit code and final report.

Resource Declaration

I will use my personal laptop (Gigabyte AERO 15 2020 – i7-10750H 2.60GHz, 16GB RAM)

to carry out the development phase. GitHub, OneDrive and Google Drive will be used to in

addition to the MCS to perform regular backups of my repository. Software packages needed will

include the open-source compiler for the OCaml or the Haskell language, and other open source

software and IDEs. I accept full responsibility for this machine and I have made contingency

plans to protect myself against hardware and/or software failure.

	Introduction
	Motivation
	MSP: a taster
	Aims of the project

	Preparation
	Multi-stage programming (MSP)
	Informal definition
	Applications

	Type systems, Logic and the Curry-Howard correspondence
	Types for MSP
	Staging the power function: hacking the evaluation order
	A Modal Type Theory
	Contextual Modal Type Theory (CMTT)

	Starting Point
	Requirements Analysis
	Software Engineering
	Methodology
	Language choice
	Tools and Licensing

	Implementation
	Core Design Principles
	Lys: from CMTT to a practical MSP language
	Zooming in the design
	Parametric Polymorphism
	Lifting
	Imperative programming

	Lys language implementation
	Repository overview
	Lexer and Parser
	Preprocessing
	Type-checker
	Interpreters
	Software engineering techniques and practices

	Summary

	Evaluation
	Correctness
	The Lys type system
	The Lys interpreter

	Performance
	Experimental setup
	A first example: staging the WHILE language
	Further Experiments and Results
	Caveats

	Expressiveness
	Overview
	Lys and
	Lys and MetaOCaml

	Summary

	Conclusion
	Lessons learnt
	Future work

	Bibliography
	More implementation
	Algebraic datatypes
	Existentials

	More Evaluation
	Correctness
	Type theoretical correctness: table of proofs in ICS4
	Staged Pow execution trace

	Performance
	Initial experiments showing the distribution of runtimes
	Uncertainty propagation for quotients
	Fibonacci in Flowchart

	Expressiveness
	Translating to Lys
	MetaOCaml

	Project Proposal

